Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Dev #48

Merged
merged 9 commits into from
Aug 22, 2024
Merged

Dev #48

Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 3 additions & 4 deletions .github/workflows/Documenter.yml
Original file line number Diff line number Diff line change
Expand Up @@ -23,12 +23,11 @@ jobs:
runs-on: ubuntu-latest
timeout-minutes: 45
steps:
- uses: actions/checkout@v3
- uses: julia-actions/setup-julia@v1
- uses: actions/checkout@v4
- uses: julia-actions/setup-julia@v2
with:
version: "1.8"
- uses: julia-actions/julia-buildpkg@v1
- uses: julia-actions/julia-docdeploy@v1
- uses: julia-actions/cache@v1
- name: Install dependencies
run: julia --project=docs/ -e 'using Pkg; Pkg.develop(PackageSpec(path=pwd())); Pkg.instantiate()'
- name: Build and deploy
Expand Down
21 changes: 16 additions & 5 deletions .github/workflows/Tier1.yml
Original file line number Diff line number Diff line change
Expand Up @@ -39,15 +39,26 @@ jobs:
arch:
- x64
steps:
- uses: actions/checkout@v3
- uses: julia-actions/setup-julia@v1
- uses: actions/checkout@v4
- uses: julia-actions/setup-julia@v2
with:
version: ${{ matrix.version }}
arch: ${{ matrix.arch }}
- uses: julia-actions/cache@v1
- uses: actions/cache@v4
env:
cache-name: cache-artifacts
with:
path: ~/.julia/artifacts
key: ${{ runner.os }}-test-${{ env.cache-name }}-${{ hashFiles('**/Project.toml') }}
restore-keys: |
${{ runner.os }}-test-${{ env.cache-name }}-
${{ runner.os }}-test-
${{ runner.os }}-
- uses: julia-actions/julia-buildpkg@v1
- uses: julia-actions/julia-runtest@v1
- uses: julia-actions/julia-processcoverage@v1
- uses: codecov/codecov-action@v3
- uses: codecov/codecov-action@v4
if: ${{ matrix.os == 'ubuntu-latest' && matrix.version == '1' && matrix.arch == 'x64' }}
with:
files: lcov.info
file: lcov.info
token: ${{ secrets.CODECOV_TOKEN }}
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ uuid = "a1dec852-9fe5-11e9-361f-8d9fde67cfa2"
keywords = ["lenearmodel", "mixedmodel"]
desc = "Mixed-effects models with flexible covariance structure."
authors = ["Vladimir Arnautov <[email protected]>"]
version = "0.15.1"
version = "0.16.0"

[deps]
DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
Expand Down
6 changes: 6 additions & 0 deletions docs/src/api.md
Original file line number Diff line number Diff line change
Expand Up @@ -124,6 +124,12 @@ Metida.ToeplitzParameterized
Metida.Unstructured
```

### Metida.ScaledWeightedCov

```@docs
Metida.ScaledWeightedCov
```

### Methods

### Metida.caic
Expand Down
6 changes: 3 additions & 3 deletions docs/src/custom.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,10 +26,10 @@ function Metida.gmat!(mx, θ, ::YourCovarianceStruct)
end
```

Function `rmat!` have 4 arguments and add repeated effect to V': V = V' + R (so V = Z * G * Z' + R), `mx` - V' matrix, `θ` - theta vector for this effect, `rz` - subject effect matrix, `ct` - your covariance type object. For example, `rmat!` for Heterogeneous Toeplitz Parameterized structure is specified bellow (`TOEPHP_ <: AbstractCovarianceType`).
Function `rmat!` have 5 arguments and add repeated effect to V': V = V' + R (so V = Z * G * Z' + R), `mx` - V' matrix, `θ` - theta vector for this effect, `rz` - subject effect matrix, `ct` - your covariance type object, `sb` = block number. For example, `rmat!` for Heterogeneous Toeplitz Parameterized structure is specified bellow (`TOEPHP_ <: AbstractCovarianceType`).

```
function Metida.rmat!(mx, θ, rz, ct::TOEPHP_)
function Metida.rmat!(mx, θ, rz, ct::TOEPHP_, ::Int)
l = size(rz, 2)
vec = rz * (θ[1:l])
s = size(mx, 1)
Expand Down Expand Up @@ -123,7 +123,7 @@ Metida.fit!(lmm)

# for R matrix

function Metida.rmat!(mx, θ, rz, ::CustomCovarianceStructure)
function Metida.rmat!(mx, θ, rz, ::CustomCovarianceStructure, ::Int)
vec = Metida.tmul_unsafe(rz, θ)
rn = size(mx, 1)
if rn > 1
Expand Down
53 changes: 50 additions & 3 deletions docs/src/details.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,33 @@ In matrix notation a mixed effect model can be represented as:
y = X\beta + Zu + \epsilon
```

where:


```math
\epsilon \sim N(0, R)

\\

u \sim N(0, G)

\\

y \sim N(X\beta, V)

```

where V depends on covariance sructure and parameters ``\theta``:

```math
V = CovStruct(\theta)

```

The unknown parameters include the regression parameters in ``\beta`` and covariance parameters in ``\theta``.

Estimation of these model parameters relies on the use of a Newton-Ralphson (by default) algorithm. When we use either algorithm for finding REML solutions, we need to compute ``V^{-1}`` and its derivatives with respect to ``\theta``, which are computationally difficult for large ``n``, therefor SWEEP (see https://github.com/joshday/SweepOperator.jl) algorithm used to meke oprtimization less computationaly expensive.

#### V

```math
Expand All @@ -33,7 +60,7 @@ logREML(\theta,\beta) = -\frac{N-p}{2} - \frac{1}{2}\sum_{i=1}^nlog|V_{\theta, i
-\frac{1}{2}log|\sum_{i=1}^nX_i'V_{\theta, i}^{-1}X_i|-\frac{1}{2}\sum_{i=1}^n(y_i - X_{i}\beta)'V_{\theta, i}^{-1}(y_i - X_{i}\beta)
```

Actually ```L(\theta) = -2logREML = L_1(\theta) + L_2(\theta) + L_3(\theta) + c``` used for optimization, where:
Actually `` L(\theta) = -2logREML = L_1(\theta) + L_2(\theta) + L_3(\theta) + c`` used for optimization, where:

```math
L_1(\theta) = \frac{1}{2}\sum_{i=1}^nlog|V_{i}| \\
Expand All @@ -51,16 +78,36 @@ L_3(\theta) = \frac{1}{2}\sum_{i=1}^n(y_i - X_{i}\beta)'V_i^{-1}(y_i - X_{i}\bet
\mathcal{H}\mathcal{L}(\theta) = \mathcal{H}L_1(\theta) + \mathcal{H}L_2(\theta) + \mathcal{H} L_3(\theta)
```

#### Weights
#### [Weights](@id weights_header)

If weights defined:

```math

W_{i} = diag(wts_{i})

\\

V_{i} = Z_{i} G Z_i'+ W^{- \frac{1}{2}}_i R_{i} W^{- \frac{1}{2}}_i
```

where ``W`` - diagonal matrix of weights.


If wts is matrix then:


```math

W_{i} = wts_{i}

\\

V_{i} = Z_{i} G Z_i'+ R_{i} \circ W_{i}
```

where ``\circ`` - element-wise multiplication.

where ```W``` - diagonal matrix of weights.


#### Multiple random and repeated effects
Expand Down
2 changes: 1 addition & 1 deletion docs/src/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ Implemented covariance structures:

Actually Metida can fit datasets with wore than 160k observation and 40k subjects levels on PC with 64 GB RAM. This is not "hard-coded" limitation, but depends on your model and data structure. Fitting of big datasets can take a lot of time. Optimal dataset size is less than 100k observations with maximum length of block less than 400.

!!! note
!!! warning

Julia v1.8 or higher required.

Expand Down
2 changes: 2 additions & 0 deletions src/Metida.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,8 +17,10 @@ import StatsBase: fit, fit!, coef, coefnames, confint, nobs, dof_residual, dof,
import Base: show, rand, ht_keyindex, getproperty
import Random: default_rng, AbstractRNG, rand!


export @formula, @covstr, @lmmformula,
SI, ScaledIdentity,
SWC, ScaledWeightedCov,
DIAG, Diag,
AR, Autoregressive,
ARH, HeterogeneousAutoregressive,
Expand Down
3 changes: 0 additions & 3 deletions src/fvalue.jl
Original file line number Diff line number Diff line change
@@ -1,8 +1,5 @@
# fvalue.jl

#=
Metida.fvalue(lmm, [0 0 1 0 0 0; 0 0 0 1 0 0; 0 0 0 0 1 0])
=#
"""
fvalue(lmm::LMM, l::Matrix)

Expand Down
31 changes: 16 additions & 15 deletions src/gmat.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
gmat!(gt[r].data, view(θ, covstr.tr[r]), covstr.random[r].covtype.s)
end
end
gt
return gt
end
# Main
@noinline function zgz_base_inc!(mx::AbstractArray, G, covstr, bi)
Expand All @@ -23,7 +23,7 @@
end
end
end
mx
return mx
end
################################################################################
################################################################################
Expand All @@ -32,22 +32,22 @@
error("No gmat! method defined for thit structure!")
end
function gmat!(mx, ::Any, ::ZERO)
mx
return mx

Check warning on line 35 in src/gmat.jl

View check run for this annotation

Codecov / codecov/patch

src/gmat.jl#L35

Added line #L35 was not covered by tests
end
#SI
Base.@propagate_inbounds function gmat!(mx, θ, ::SI_)
val = θ[1] ^ 2
@inbounds @simd for i = 1:size(mx, 1)
mx[i, i] = val
end
mx
return mx
end
#DIAG
function gmat!(mx, θ, ::DIAG_)
@inbounds @simd for i = 1:size(mx, 1)
mx[i, i] = θ[i] ^ 2
end
mx
return mx
end
#AR
function gmat!(mx, θ, ::AR_)
Expand All @@ -64,7 +64,7 @@
end
end
end
mx
return mx
end
#ARH
function gmat!(mx, θ, ::ARH_)
Expand All @@ -84,7 +84,7 @@
@inbounds @simd for m = 1:s
mx[m, m] *= mx[m, m]
end
mx
return mx
end
#CS
function gmat!(mx, θ, ::CS_)
Expand All @@ -99,7 +99,7 @@
end
end
end
mx
return mx
end
#CSH
function gmat!(mx, θ, ::CSH_)
Expand All @@ -118,7 +118,7 @@
@inbounds @simd for m = 1:s
mx[m, m] *= mx[m, m]
end
mx
return mx
end
################################################################################
#ARMA
Expand All @@ -136,7 +136,7 @@
end
end
end
mx
return mx
end
#TOEP
function gmat!(mx, θ, ::TOEP_)
Expand All @@ -152,7 +152,7 @@
end
end
end
mx
return mx
end
function gmat!(mx, θ, ct::TOEPP_)
de = θ[1] ^ 2 #diagonal element
Expand All @@ -167,7 +167,7 @@
end
end
end
mx
return mx
end
#TOEPH
function gmat!(mx, θ, ::TOEPH_)
Expand All @@ -186,7 +186,7 @@
@inbounds @simd for m = 1:s
mx[m, m] *= mx[m, m]
end
mx
return mx
end
#TOEPHP
function gmat!(mx, θ, ct::TOEPHP_)
Expand All @@ -205,7 +205,7 @@
@inbounds @simd for m = 1:s
mx[m, m] *= mx[m, m]
end
mx
return mx
end
#UN
function gmat!(mx, θ, ::UN_)
Expand All @@ -224,7 +224,7 @@
@inbounds @simd for m = 1:s
mx[m, m] *= mx[m, m]
end
mx
return mx
end

function tpnum(m, n, s)
Expand All @@ -233,4 +233,5 @@
b += s - i
end
b -= s - n
return b
end
Loading
Loading