Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove ModelFrame, add weights, Repeated effect vector first step #35

Merged
merged 28 commits into from
Jan 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/CompatHelper.yml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name: CompatHelper
on:
schedule:
- cron: '0 0 * * 1'
- cron: '0 0 1 * *'
workflow_dispatch:
jobs:
CompatHelper:
Expand Down
2 changes: 1 addition & 1 deletion .github/workflows/Tier1.yml
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,8 @@ jobs:
matrix:
version:
- '1.6'
- '1.7'
- '1.8'
- '1'
os:
- ubuntu-latest
- macOS-latest
Expand Down
6 changes: 3 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@ uuid = "a1dec852-9fe5-11e9-361f-8d9fde67cfa2"
keywords = ["lenearmodel", "mixedmodel"]
desc = "Mixed-effects models with flexible covariance structure."
authors = ["Vladimir Arnautov <[email protected]>"]
version = "0.14.9"
version = "0.15.0"

[deps]
DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
Expand All @@ -20,13 +20,13 @@ StatsModels = "3eaba693-59b7-5ba5-a881-562e759f1c8d"

[compat]
DiffResults = "1"
Distributions = "0.20, 0.21, 0.22, 0.23, 0.24, 0.25"
Distributions = "0.21, 0.22, 0.23, 0.24, 0.25"
ForwardDiff = "0.10"
LineSearches = "7"
MetidaBase = "0.11, 0.12"
Optim = "1"
ProgressMeter = "1"
StatsBase = "0.29, 0.30, 0.31, 0.32, 0.33, 0.34"
StatsBase = "0.30, 0.31, 0.32, 0.33, 0.34"
StatsModels = "0.7"
julia = "1"

Expand Down
2 changes: 1 addition & 1 deletion docs/src/custom.md
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,7 @@ Example:
using Metida, DataFrames, CSV, CategoricalArrays

ftdf = CSV.File(joinpath(dirname(pathof(Metida)), "..", "test", "csv", "1fptime.csv"); types = [String, String, Float64, Float64]) |> DataFrame
df0 = CSV.File(joinpath(dirname(pathof(Metida)), "..", "test", "csv", "df0.csv"); types = [String, String, String, String,Float64, Float64]) |> DataFrame
df0 = CSV.File(joinpath(dirname(pathof(Metida)), "..", "test", "csv", "df0.csv"); types = [String, String, String, String,Float64, Float64, Float64]) |> DataFrame

struct CustomCovarianceStructure <: Metida.AbstractCovarianceType end
function Metida.covstrparam(ct::CustomCovarianceStructure, t::Int)::Tuple{Int, Int}
Expand Down
23 changes: 22 additions & 1 deletion docs/src/details.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ logREML(\theta,\beta) = -\frac{N-p}{2} - \frac{1}{2}\sum_{i=1}^nlog|V_{\theta, i
-\frac{1}{2}log|\sum_{i=1}^nX_i'V_{\theta, i}^{-1}X_i|-\frac{1}{2}\sum_{i=1}^n(y_i - X_{i}\beta)'V_{\theta, i}^{-1}(y_i - X_{i}\beta)
```

Actually ```L(\theta) = -2logREML = L_1(\theta) + L_2(\theta) + L_3(\theta) + c`` used for optimization, where:
Actually ```L(\theta) = -2logREML = L_1(\theta) + L_2(\theta) + L_3(\theta) + c``` used for optimization, where:

```math
L_1(\theta) = \frac{1}{2}\sum_{i=1}^nlog|V_{i}| \\
Expand All @@ -51,6 +51,27 @@ L_3(\theta) = \frac{1}{2}\sum_{i=1}^n(y_i - X_{i}\beta)'V_i^{-1}(y_i - X_{i}\bet
\mathcal{H}\mathcal{L}(\theta) = \mathcal{H}L_1(\theta) + \mathcal{H}L_2(\theta) + \mathcal{H} L_3(\theta)
```

#### Weights

If weights defined:

```math
V_{i} = Z_{i} G Z_i'+ W^{- \frac{1}{2}}_i R_{i} W^{- \frac{1}{2}}_i
```


where ```W``` - diagonal matrix of weights.


#### Multiple random and repeated effects

If model include multiple effects ( with n random and m repeated effects) final V will be:

```math
V_{i} = Z_{i, 1} G_{1} Z_{i, 1}' + ... + Z_{i, n} G_{1} Z_{i, n}'+ W^{- \frac{1}{2}}_i ( R_{i, 1} + ... + R_{i, m}) W^{- \frac{1}{2}}_i
```


##### Initial step

Initial (first) step before optimization may be done:
Expand Down
30 changes: 28 additions & 2 deletions docs/src/instanduse.md
Original file line number Diff line number Diff line change
Expand Up @@ -63,8 +63,8 @@ Define `random` and `repreated` effects with [`Metida.VarEffect`](@ref) using [`
right side is a effect itself. [`Metida.HeterogeneousCompoundSymmetry`](@ref) and [`Metida.Diag`](@ref) (Diagonal) in example bellow is a model of variance-covariance structure. See also [`Metida.@lmmformula`](@ref) macro.

!!! note
In some cases levels of repeated effect should not be equal inside each level of subject or model will not have any sense. For example, it is assumed that usually CSH or UN (Unstructured) using with levels of repeated effect is different inside each level of subject.
Metida does not check this!

In some cases levels of repeated effect should not be equal inside each level of subject or model will not have any sense. For example, it is assumed that usually CSH or UN (Unstructured) using with levels of repeated effect is different inside each level of subject. Metida does not check this!


```@example lmmexample
Expand All @@ -73,6 +73,15 @@ random = VarEffect(@covstr(formulation|subject), CSH),
repeated = VarEffect(@covstr(formulation|subject), DIAG));
```

Also [`Metida.@lmmformula`](@ref) macro can be used:

```julia
lmm = LMM(@lmmformula(var~sequence+period+formulation,
random = formulation|subject:CSH,
repeated = formulation|subject:DIAG),
df)
```

#### Step 3: Fit

Just fit the model.
Expand All @@ -87,6 +96,23 @@ fit!(lmm)
lmm.log
```

#### Confidence intervals for coefficients


```@example lmmexample
confint(lmm)
```

!!! note

Satterthwaite approximation for the denominator degrees of freedom used by default.

#### StatsBsae API

StatsBsae API implemented: [`Metida.islinear`](@ref), [`Metida.confint`](@ref), [`Metida.coef`](@ref), [`Metida.coefnames`](@ref), [`Metida.dof_residual`](@ref), [`Metida.dof`](@ref), [`Metida.loglikelihood`](@ref), [`Metida.aic`](@ref), [`Metida.bic`](@ref), [`Metida.aicc`](@ref), [`Metida.isfitted`](@ref), [`Metida.vcov`](@ref), [`Metida.stderror`](@ref), [`Metida.modelmatrix`](@ref), [`Metida.response`](@ref), [`Metida.crossmodelmatrix`](@ref), [`Metida.coeftable`](@ref), [`Metida.responsename`](@ref)



##### Type III Tests of Fixed Effects

!!! warning
Expand Down
14 changes: 7 additions & 7 deletions src/dof_contain.jl
Original file line number Diff line number Diff line change
Expand Up @@ -41,8 +41,8 @@ end
Minimum returned. If no random effect found N - rank(XZ) returned.
"""
function dof_contain(lmm, i)
ind = lmm.mm.assign[i]
sym = StatsModels.termvars(lmm.mf.f.rhs.terms[ind])
ind = lmm.modstr.assign[i]
sym = StatsModels.termvars(lmm.f.rhs.terms[ind])
rr = Vector{Int}(undef, 0)
for r = 1:length(lmm.covstr.random)
if length(intersect(sym, StatsModels.termvars(lmm.covstr.random[r].model))) > 0
Expand All @@ -57,12 +57,12 @@ function dof_contain(lmm, i)
end

function dof_contain(lmm)
dof = zeros(Int, length(lmm.mm.assign))
dof = zeros(Int, length(lmm.modstr.assign))
rrt = zeros(Int, length(lmm.covstr.random))
rz = 0
for i = 1:length(lmm.mm.assign)
ind = lmm.mm.assign[i]
sym = StatsModels.termvars(lmm.mf.f.rhs.terms[ind])
for i = 1:length(lmm.modstr.assign)
ind = lmm.modstr.assign[i]
sym = StatsModels.termvars(lmm.f.rhs.terms[ind])
rr = Vector{Int}(undef, 0)
for r = 1:length(lmm.covstr.random)
if length(intersect(sym, StatsModels.termvars(lmm.covstr.random[r].model))) > 0
Expand All @@ -87,7 +87,7 @@ end

"""
function dof_contain_f(lmm, i)
sym = StatsModels.termvars(lmm.mf.f.rhs.terms[i])
sym = StatsModels.termvars(lmm.f.rhs.terms[i])
rr = Vector{Int}(undef, 0)
for r = 1:length(lmm.covstr.random)
if length(intersect(sym, StatsModels.termvars(lmm.covstr.random[r].model))) > 0
Expand Down
1 change: 1 addition & 0 deletions src/fit.jl
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ Fit LMM model.
* `varlinkf` - :exp / :sq / :identity [ref](@ref varlink_header)
* `rholinkf` - :sigm / :atan / :sqsigm / :psigm
* `aifirst` - first iteration with AI-like method - :default / :ai / :score
* `aifmax` - maximum pre-optimization steps
* `g_tol` - absolute tolerance in the gradient
* `x_tol` - absolute tolerance of theta vector
* `f_tol` - absolute tolerance in changes of the REML
Expand Down
11 changes: 6 additions & 5 deletions src/gmat.jl
Original file line number Diff line number Diff line change
Expand Up @@ -89,11 +89,12 @@ end
#CS
function gmat!(mx, θ, ::CS_)
s = size(mx, 1)
mx .= θ[1]^2
θ₁² = θ[1]^2
mx .= θ₁²
if s > 1
mxθ2 = θ[1]^2 * θ[2]
mxθ2 = θ₁² * θ[2]
for n = 2:s
@inbounds @simd for m = 1:n-1
@inbounds @simd for m = 1:n - 1
mx[m, n] = mxθ2
end
end
Expand Down Expand Up @@ -212,8 +213,8 @@ function gmat!(mx, θ, ::UN_)
end
if s > 1
for n = 2:s
@inbounds @simd for m = 1:n-1
mx[m, n] = mx[m, m] * mx[n, n] * θ[s+tpnum(m, n, s)]
@inbounds @simd for m = 1:n - 1
mx[m, n] = mx[m, m] * mx[n, n] * θ[s + tpnum(m, n, s)]
end
end
end
Expand Down
14 changes: 14 additions & 0 deletions src/linearalgebra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -139,6 +139,20 @@
end
θ
end
# Diagonal(b) * A * Diagonal(b) - chnage only A upper triangle
@noinline function mulβdαβd!(A::AbstractMatrix, b::AbstractVector)
q = size(A, 1)
p = size(A, 2)
if !(q == p == length(b)) throw(DimensionMismatch("size(A, 1) and size(A, 2) should be equal length(b)")) end
for n in 1:p
@simd for m in 1:n
@inbounds A[m, n] *= b[m] * b[n]
end

Check warning on line 150 in src/linearalgebra.jl

View check run for this annotation

Codecov / codecov/patch

src/linearalgebra.jl#L150

Added line #L150 was not covered by tests
end
A
end


################################################################################
@inline function tmul_unsafe(rz, θ::AbstractVector{T}) where T
vec = zeros(T, size(rz, 1))
Expand Down
Loading
Loading