-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add baseline and eta_vep-based script.
- Loading branch information
Showing
2 changed files
with
349 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
# Initialisation | ||
using Plots, Printf, Statistics, LinearAlgebra | ||
Dat = Float64 # Precision (double=Float64 or single=Float32) | ||
# Macros | ||
@views av(A) = 0.25*(A[1:end-1,1:end-1].+A[2:end,1:end-1].+A[1:end-1,2:end].+A[2:end,2:end]) | ||
@views av_xa(A) = 0.5*(A[1:end-1,:].+A[2:end,:]) | ||
@views av_ya(A) = 0.5*(A[:,1:end-1].+A[:,2:end]) | ||
# 2D Stokes routine | ||
@views function Stokes2D_vep() | ||
do_DP = true # do_DP=false: Von Mises, do_DP=true: Drucker-Prager (friction angle) | ||
η_reg = 1.2e-2 # regularisation "viscosity" | ||
# Physics | ||
Lx, Ly = 1.0, 1.0 # domain size | ||
radi = 0.01 # inclusion radius | ||
τ_y = 1.6 # yield stress. If do_DP=true, τ_y stand for the cohesion: c*cos(ϕ) | ||
sinϕ = sind(30)*do_DP # sinus of the friction angle | ||
μ0 = 1.0 # viscous viscosity | ||
G0 = 1.0 # elastic shear modulus | ||
Gi = G0/(6.0-4.0*do_DP) # elastic shear modulus perturbation | ||
εbg = 1.0 # background strain-rate | ||
# Numerics | ||
nt = 10 # number of time steps | ||
nx, ny = 63, 63 # numerical grid resolution | ||
Vdmp = 4.0 # convergence acceleration (damping) | ||
Vsc = 2.0 # iterative time step limiter | ||
Ptsc = 6.0 # iterative time step limiter | ||
ε = 1e-6 # nonlinear tolerence | ||
iterMax = 3e4 # max number of iters | ||
nout = 200 # check frequency | ||
# Preprocessing | ||
dx, dy = Lx/nx, Ly/ny | ||
dt = μ0/G0/4.0 # assumes Maxwell time of 4 | ||
# Array initialisation | ||
Pt = zeros(Dat, nx ,ny ) | ||
∇V = zeros(Dat, nx ,ny ) | ||
Vx = zeros(Dat, nx+1,ny ) | ||
Vy = zeros(Dat, nx ,ny+1) | ||
Exx = zeros(Dat, nx ,ny ) | ||
Eyy = zeros(Dat, nx ,ny ) | ||
Exyv = zeros(Dat, nx+1,ny+1) | ||
Exx1 = zeros(Dat, nx ,ny ) | ||
Eyy1 = zeros(Dat, nx ,ny ) | ||
Exy1 = zeros(Dat, nx ,ny ) | ||
Exyv1 = zeros(Dat, nx+1,ny+1) | ||
Txx = zeros(Dat, nx ,ny ) | ||
Tyy = zeros(Dat, nx ,ny ) | ||
Txy = zeros(Dat, nx ,ny ) | ||
Txyv = zeros(Dat, nx+1,ny+1) | ||
Txx_o = zeros(Dat, nx ,ny ) | ||
Tyy_o = zeros(Dat, nx ,ny ) | ||
Txy_o = zeros(Dat, nx ,ny ) | ||
Txyv_o = zeros(Dat, nx+1,ny+1) | ||
Tii = zeros(Dat, nx ,ny ) | ||
Eii = zeros(Dat, nx ,ny ) | ||
F = zeros(Dat, nx ,ny ) | ||
Fchk = zeros(Dat, nx ,ny ) | ||
Pla = zeros(Dat, nx ,ny ) | ||
λ = zeros(Dat, nx ,ny ) | ||
dQdTxx = zeros(Dat, nx ,ny ) | ||
dQdTyy = zeros(Dat, nx ,ny ) | ||
dQdTxy = zeros(Dat, nx ,ny ) | ||
Rx = zeros(Dat, nx-1,ny ) | ||
Ry = zeros(Dat, nx ,ny-1) | ||
dVxdt = zeros(Dat, nx-1,ny ) | ||
dVydt = zeros(Dat, nx ,ny-1) | ||
dtPt = zeros(Dat, nx ,ny ) | ||
dtVx = zeros(Dat, nx-1,ny ) | ||
dtVy = zeros(Dat, nx ,ny-1) | ||
Rog = zeros(Dat, nx ,ny ) | ||
η_v = μ0*ones(Dat, nx, ny) | ||
η_e = dt*G0*ones(Dat, nx, ny) | ||
η_ev = dt*G0*ones(Dat, nx+1, ny+1) | ||
η_ve = ones(Dat, nx, ny) | ||
η_vep = ones(Dat, nx, ny) | ||
η_vepv = ones(Dat, nx+1, ny+1) | ||
# Initial condition | ||
xc, yc = LinRange(dx/2, Lx-dx/2, nx), LinRange(dy/2, Ly-dy/2, ny) | ||
xc, yc = LinRange(dx/2, Lx-dx/2, nx), LinRange(dy/2, Ly-dy/2, ny) | ||
xv, yv = LinRange(0.0, Lx, nx+1), LinRange(0.0, Ly, ny+1) | ||
(Xvx,Yvx) = ([x for x=xv,y=yc], [y for x=xv,y=yc]) | ||
(Xvy,Yvy) = ([x for x=xc,y=yv], [y for x=xc,y=yv]) | ||
radc = (xc.-Lx./2).^2 .+ (yc'.-Ly./2).^2 | ||
radv = (xv.-Lx./2).^2 .+ (yv'.-Ly./2).^2 | ||
η_e[radc.<radi] .= dt*Gi | ||
η_ev[radv.<radi].= dt*Gi | ||
η_ve .= (1.0./η_e + 1.0./η_v).^-1 | ||
Vx .= εbg.*Xvx | ||
Vy .= .-εbg.*Yvy | ||
# Time loop | ||
t=0.0; evo_t=[]; evo_Txx=[]; niter = 0 | ||
for it = 1:nt | ||
iter=1; err=2*ε; err_evo1=[]; err_evo2=[] | ||
Txx_o.=Txx; Tyy_o.=Tyy; Txy_o.=av(Txyv); Txyv_o.=Txyv; λ.=0.0 | ||
local itg | ||
while (err>ε && iter<=iterMax) | ||
# divergence - pressure | ||
∇V .= diff(Vx, dims=1)./dx .+ diff(Vy, dims=2)./dy | ||
Pt .= Pt .- dtPt.*∇V | ||
# strain rates | ||
Exx .= diff(Vx, dims=1)./dx .- 1.0/3.0*∇V | ||
Eyy .= diff(Vy, dims=2)./dy .- 1.0/3.0*∇V | ||
Exyv[2:end-1,2:end-1] .= 0.5.*(diff(Vx[2:end-1,:], dims=2)./dy .+ diff(Vy[:,2:end-1], dims=1)./dx) | ||
# visco-elastic strain rates | ||
Exx1 .= Exx .+ Txx_o ./2.0./η_e | ||
Eyy1 .= Eyy .+ Tyy_o ./2.0./η_e | ||
Exyv1 .= Exyv .+ Txyv_o./2.0./η_ev | ||
Exy1 .= av(Exyv) .+ Txy_o ./2.0./η_e | ||
Eii .= sqrt.(0.5*(Exx1.^2 .+ Eyy1.^2) .+ Exy1.^2) | ||
# trial stress | ||
Txx .= 2.0.*η_ve.*Exx1 | ||
Tyy .= 2.0.*η_ve.*Eyy1 | ||
Txy .= 2.0.*η_ve.*Exy1 | ||
Tii .= sqrt.(0.5*(Txx.^2 .+ Tyy.^2) .+ Txy.^2) | ||
# yield function | ||
F .= Tii .- τ_y .- Pt.*sinϕ | ||
Pla .= 0.0 | ||
Pla .= F .> 0.0 | ||
λ .= Pla.*F./(η_ve .+ η_reg) | ||
dQdTxx .= 0.5.*Txx./Tii | ||
dQdTyy .= 0.5.*Tyy./Tii | ||
dQdTxy .= Txy./Tii | ||
# plastic corrections | ||
Txx .= 2.0.*η_ve.*(Exx1 .- λ.*dQdTxx) | ||
Tyy .= 2.0.*η_ve.*(Eyy1 .- λ.*dQdTyy) | ||
Txy .= 2.0.*η_ve.*(Exy1 .- 0.5.*λ.*dQdTxy) | ||
Tii .= sqrt.(0.5*(Txx.^2 .+ Tyy.^2) .+ Txy.^2) | ||
Fchk .= Tii .- τ_y .- Pt.*sinϕ .- λ.*η_reg | ||
η_vep .= Tii./2.0./Eii | ||
η_vepv[2:end-1,2:end-1] .= av(η_vep); η_vepv[1,:].=η_vepv[2,:]; η_vepv[end,:].=η_vepv[end-1,:]; η_vepv[:,1].=η_vepv[:,2]; η_vepv[:,end].=η_vepv[:,end-1] | ||
Txyv .= 2.0.*η_vepv.*Exyv1 | ||
# PT timestep | ||
dtVx .= min(dx,dy)^2.0./av_xa(η_vep)./4.1./Vsc | ||
dtVy .= min(dx,dy)^2.0./av_ya(η_vep)./4.1./Vsc | ||
dtPt .= 4.1.*η_vep./max(nx,ny)./Ptsc | ||
# velocities | ||
Rx .= .-diff(Pt, dims=1)./dx .+ diff(Txx, dims=1)./dx .+ diff(Txyv[2:end-1,:], dims=2)./dy | ||
Ry .= .-diff(Pt, dims=2)./dy .+ diff(Tyy, dims=2)./dy .+ diff(Txyv[:,2:end-1], dims=1)./dx .+ av_ya(Rog) | ||
dVxdt .= dVxdt.*(1-Vdmp/nx) .+ Rx | ||
dVydt .= dVydt.*(1-Vdmp/ny) .+ Ry | ||
Vx[2:end-1,:] .= Vx[2:end-1,:] .+ dVxdt.*dtVx | ||
Vy[:,2:end-1] .= Vy[:,2:end-1] .+ dVydt.*dtVy | ||
# convergence check | ||
if mod(iter, nout)==0 | ||
norm_Rx = norm(Rx)/sqrt(length(Rx)); norm_Ry = norm(Ry)/sqrt(length(Ry)); norm_∇V = norm(∇V)/sqrt(length(∇V)) | ||
err = maximum([norm_Rx, norm_Ry, norm_∇V]) | ||
push!(err_evo1, err); push!(err_evo2, itg) | ||
@printf("it = %d, iter = %d, err = %1.2e norm[Rx=%1.2e, Ry=%1.2e, ∇V=%1.2e] (Fchk=%1.2e) \n", it, itg, err, norm_Rx, norm_Ry, norm_∇V, maximum(Fchk)) | ||
end | ||
iter+=1; itg=iter; niter += 1 | ||
end | ||
t = t + dt | ||
push!(evo_t, t); push!(evo_Txx, maximum(Txx)) | ||
# Plotting | ||
p1 = heatmap(xv, yc, Vx' , aspect_ratio=1, xlims=(0, Lx), ylims=(dy/2, Ly-dy/2), c=:inferno, title="Vx") | ||
# p2 = heatmap(xc, yv, Vy' , aspect_ratio=1, xlims=(dx/2, Lx-dx/2), ylims=(0, Ly), c=:inferno, title="Vy") | ||
p2 = heatmap(xc, yc, η_vep' , aspect_ratio=1, xlims=(dx/2, Lx-dx/2), ylims=(0, Ly), c=:inferno, title="η_vep") | ||
p3 = heatmap(xc, yc, Tii' , aspect_ratio=1, xlims=(dx/2, Lx-dx/2), ylims=(0, Ly), c=:inferno, title="τii") | ||
p4 = plot(evo_t, evo_Txx , legend=false, xlabel="time", ylabel="max(τxx)", linewidth=0, markershape=:circle, framestyle=:box, markersize=3) | ||
plot!(evo_t, 2.0.*εbg.*μ0.*(1.0.-exp.(.-evo_t.*G0./μ0)), linewidth=2.0) # analytical solution for VE loading | ||
plot!(evo_t, 2.0.*εbg.*μ0.*ones(size(evo_t)), linewidth=2.0) # viscous flow stress | ||
if !do_DP plot!(evo_t, τ_y*ones(size(evo_t)), linewidth=2.0) end # von Mises yield stress | ||
display(plot(p1, p2, p3, p4)) | ||
end | ||
println(niter) | ||
return | ||
end | ||
|
||
Stokes2D_vep() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
using Plots,LinearAlgebra,Printf | ||
# helper functions | ||
@views av(A) = 0.25*(A[1:end-1,1:end-1].+A[2:end,1:end-1].+A[1:end-1,2:end].+A[2:end,2:end]) | ||
@views av_xa(A) = 0.5*(A[1:end-1,:].+A[2:end,:]) | ||
@views av_ya(A) = 0.5*(A[:,1:end-1].+A[:,2:end]) | ||
@views maxloc(A) = max.(A[1:end-2,1:end-2],A[1:end-2,2:end-1],A[1:end-2,3:end], | ||
A[2:end-1,1:end-2],A[2:end-1,2:end-1],A[2:end-1,3:end], | ||
A[3:end ,1:end-2],A[3:end ,2:end-1],A[3:end ,3:end]) | ||
@views bc2!(A) = begin A[1,:] = A[2,:]; A[end,:] = A[end-1,:]; A[:,1] = A[:,2]; A[:,end] = A[:,end-1] end | ||
# main function | ||
@views function Stokes2D_vep() | ||
use_vep = true | ||
# phyiscs | ||
lx,ly = 1.0,1.0 | ||
radi = 0.1 | ||
η0 = 1.0 | ||
η_reg = 1.2e-2 | ||
G0 = 1.0 | ||
Gi = 0.5G0 | ||
τ_y = 1.6 | ||
sinϕ = sind(30) | ||
ebg = 1.0 | ||
dt = η0/G0/4.0 | ||
# numerics | ||
nx,ny = 63,63 | ||
nt = 10 | ||
εnl = 1e-6 | ||
maxiter = 150max(nx,ny) | ||
nchk = 2max(nx,ny) | ||
Re = 5π | ||
r = 1.0 | ||
CFL = 0.99/sqrt(2) | ||
# preprocessing | ||
dx,dy = lx/nx,ly/ny | ||
max_lxy = max(lx,ly) | ||
vpdτ = CFL*min(dx,dy) | ||
xc,yc = LinRange(-(lx-dx)/2,(lx-dx)/2,nx),LinRange(-(ly-dy)/2,(ly-dy)/2,ny) | ||
xv,yv = LinRange(-lx/2,lx/2,nx+1),LinRange(-ly/2,ly/2,ny+1) | ||
# allocate arrays | ||
Pr = zeros(nx ,ny ) | ||
τxx = zeros(nx ,ny ) | ||
τyy = zeros(nx ,ny ) | ||
τxy = zeros(nx+1,ny+1) | ||
τxyc = zeros(nx ,ny ) | ||
τii = zeros(nx ,ny ) | ||
Eii = zeros(nx ,ny ) | ||
λ = zeros(nx ,ny ) | ||
F = zeros(nx ,ny ) | ||
Fchk = zeros(nx ,ny ) | ||
dQdTxx = zeros(nx ,ny ) | ||
dQdTyy = zeros(nx ,ny ) | ||
dQdTxy = zeros(nx ,ny ) | ||
τxx_o = zeros(nx ,ny ) | ||
τyy_o = zeros(nx ,ny ) | ||
τxy_o = zeros(nx+1,ny+1) | ||
Vx = zeros(nx+1,ny ) | ||
Vy = zeros(nx ,ny+1) | ||
dVx = zeros(nx-1,ny ) | ||
dVy = zeros(nx ,ny-1) | ||
Rx = zeros(nx-1,ny ) | ||
Ry = zeros(nx ,ny-1) | ||
∇V = zeros(nx ,ny ) | ||
ρg = zeros(nx ,ny ) | ||
Exx = zeros(nx ,ny ) | ||
Eyy = zeros(nx ,ny ) | ||
Exy = zeros(nx+1,ny+1) | ||
Exx_e = zeros(nx ,ny ) | ||
Eyy_e = zeros(nx ,ny ) | ||
Exy_e = zeros(nx+1,ny+1) | ||
Exx_τ = zeros(nx ,ny ) | ||
Eyy_τ = zeros(nx ,ny ) | ||
Exy_τ = zeros(nx+1,ny+1) | ||
Exyc_τ = zeros(nx ,ny ) | ||
η_ve_τ = zeros(nx ,ny ) | ||
η_ve_τv = zeros(nx+1,ny+1) | ||
η_ve = zeros(nx ,ny ) | ||
η_vem = zeros(nx ,ny ) | ||
η_vev = zeros(nx+1,ny+1) | ||
η_vevm = zeros(nx+1,ny+1) | ||
dτ_ρ = zeros(nx ,ny ) | ||
dτ_ρv = zeros(nx+1,ny+1) | ||
Gdτ = zeros(nx ,ny ) | ||
Gdτv = zeros(nx+1,ny+1) | ||
η_vep = zeros(nx ,ny ) | ||
η_vepv = zeros(nx+1,ny+1) | ||
# init | ||
Vx = [ ebg*x for x ∈ xv, _ ∈ yc ] | ||
Vy = [-ebg*y for _ ∈ xc, y ∈ yv ] | ||
η = fill(η0,nx,ny); ηv = fill(η0,nx+1,ny+1) | ||
G = fill(G0,nx,ny); Gv = fill(G0,nx+1,ny+1) | ||
@. G[xc^2 + yc'^2 < radi^2] = Gi | ||
@. Gv[xv^2 + yv'^2 < radi^2] = Gi | ||
η_e = G.*dt; η_ev = Gv.*dt | ||
@. η_ve = 1.0/(1.0/η + 1.0/η_e) | ||
@. η_vev = 1.0/(1.0/ηv + 1.0/η_ev) | ||
@. η_vep = 1.0/(1.0/η + 1.0/η_e) | ||
@. η_vepv = 1.0/(1.0/ηv + 1.0/η_ev) | ||
# action | ||
t = 0.0; evo_t = Float64[]; evo_τxx = Float64[]; niter = 0 | ||
for it = 1:nt | ||
τxx_o .= τxx; τyy_o .= τyy; τxy_o .= τxy | ||
err = 2εnl; iter = 0 | ||
while err > εnl && iter < maxiter | ||
if !use_vep | ||
η_vem[2:end-1,2:end-1] .= maxloc(η_ve) ; bc2!(η_vem) | ||
η_vevm[2:end-1,2:end-1] .= maxloc(η_vev); bc2!(η_vevm) | ||
else | ||
η_vem[2:end-1,2:end-1] .= maxloc(η_vep) ; bc2!(η_vem) | ||
η_vevm[2:end-1,2:end-1] .= maxloc(η_vepv); bc2!(η_vevm) | ||
end | ||
@. dτ_ρ = vpdτ*max_lxy/Re/η_vem | ||
@. dτ_ρv = vpdτ*max_lxy/Re/η_vevm | ||
@. Gdτ = vpdτ^2/dτ_ρ/(r+2.0) | ||
@. Gdτv = vpdτ^2/dτ_ρv/(r+2.0) | ||
@. η_ve_τ = 1.0/(1.0/η + 1.0/η_e + 1.0/Gdτ) | ||
@. η_ve_τv = 1.0/(1.0/ηv + 1.0/η_ev + 1.0/Gdτv) | ||
# pressure | ||
∇V .= diff(Vx, dims=1)./dx .+ diff(Vy, dims=2)./dy | ||
@. Pr -= r*Gdτ*∇V | ||
# strain rates | ||
Exx .= diff(Vx, dims=1)./dx | ||
Eyy .= diff(Vy, dims=2)./dy | ||
Exy[2:end-1,2:end-1] .= 0.5.*(diff(Vx[2:end-1,:], dims=2)./dy .+ diff(Vy[:,2:end-1], dims=1)./dx) | ||
# viscoelastic strain rates | ||
@. Exx_e = Exx + τxx_o/2.0/η_e | ||
@. Eyy_e = Eyy + τyy_o/2.0/η_e | ||
@. Exy_e = Exy + τxy_o/2.0/η_ev | ||
# viscoelastic pseudo-transient strain rates | ||
@. Exx_τ = Exx_e + τxx/2.0/Gdτ | ||
@. Eyy_τ = Eyy_e + τyy/2.0/Gdτ | ||
@. Exy_τ = Exy_e + τxy/2.0/Gdτv | ||
# stress update | ||
@. τxx = 2.0*η_ve_τ *Exx_τ | ||
@. τyy = 2.0*η_ve_τ *Eyy_τ | ||
@. τxy = 2.0*η_ve_τv*Exy_τ | ||
@. τxyc = 2.0*η_ve_τ*Exyc_τ | ||
# stress and strain rate invariants | ||
@. τii = sqrt(0.5*(τxx^2 + τyy^2) + τxyc*τxyc) | ||
@. Eii = sqrt(0.5*(Exx_τ^2 + Eyy_τ^2) + Exyc_τ*Exyc_τ) | ||
# yield function | ||
@. F = τii - τ_y - Pr.*sinϕ | ||
@. λ = max(F,0.0)/(η_ve_τ + η_reg) | ||
@. dQdTxx = 0.5*τxx /τii | ||
@. dQdTyy = 0.5*τyy /τii | ||
@. dQdTxy = τxyc/τii | ||
# plastic correction | ||
@. τxx = 2.0*η_ve_τ *(Exx_τ - λ*dQdTxx) | ||
@. τyy = 2.0*η_ve_τ *(Eyy_τ - λ*dQdTyy) | ||
@. τxyc = 2.0*η_ve_τ *(Exyc_τ - 0.5*λ*dQdTxy) | ||
τxy[2:end-1,2:end-1] .= 2.0 .* η_ve_τv[2:end-1,2:end-1].*(Exy_τ[2:end-1,2:end-1] .- 0.5 .* av(λ.*dQdTxy)) | ||
@. τii = sqrt(0.5*(τxx^2 + τyy^2) + τxyc*τxyc) | ||
@. Fchk = τii - τ_y - Pr*sinϕ - λ*η_reg | ||
@. η_vep = τii / 2.0 / Eii * 19.3 | ||
η_vepv[2:end-1,2:end-1] .= av(η_vep); bc2!(η_vep) | ||
# velocity update | ||
dVx .= av_xa(dτ_ρ) .* (.-diff(Pr, dims=1)./dx .+ diff(τxx, dims=1)./dx .+ diff(τxy[2:end-1,:], dims=2)./dy) | ||
dVy .= av_ya(dτ_ρ) .* (.-diff(Pr, dims=2)./dy .+ diff(τyy, dims=2)./dy .+ diff(τxy[:,2:end-1], dims=1)./dx .+ av_ya(ρg)) | ||
@. Vx[2:end-1,:] = Vx[2:end-1,:] + dVx | ||
@. Vy[:,2:end-1] = Vy[:,2:end-1] + dVy | ||
if iter % nchk == 0 | ||
Rx .= .-diff(Pr, dims=1)./dx .+ diff(τxx, dims=1)./dx .+ diff(τxy[2:end-1,:], dims=2)./dy | ||
Ry .= .-diff(Pr, dims=2)./dy .+ diff(τyy, dims=2)./dy .+ diff(τxy[:,2:end-1], dims=1)./dx .+ av_ya(ρg) | ||
norm_Rx = norm(Rx)/sqrt(length(Rx)); norm_Ry = norm(Ry)/sqrt(length(Ry)); norm_∇V = norm(∇V)/sqrt(length(∇V)) | ||
err = maximum([norm_Rx, norm_Ry, norm_∇V]) | ||
@printf("it = %d, iter = %d, err = %1.2e norm[Rx=%1.2e, Ry=%1.2e, ∇V=%1.2e] (Fchk=%1.2e) \n", it, iter, err, norm_Rx, norm_Ry, norm_∇V, maximum(Fchk)) | ||
end | ||
iter += 1; niter += 1 | ||
end | ||
t += dt; push!(evo_t, t); push!(evo_τxx, maximum(τxx)) | ||
p1 = heatmap(xc,yc,τii',aspect_ratio=1,xlims=(-lx/2,lx/2),ylims=(-ly/2,ly/2),title="τii") | ||
# p3 = heatmap(xc,yc,η_vep',aspect_ratio=1,xlims=(-lx/2,lx/2),ylims=(-ly/2,ly/2),title="τii") | ||
p2 = plot(evo_t, evo_τxx , legend=false, xlabel="time", ylabel="max(τxx)", linewidth=0, markershape=:circle, framestyle=:box, markersize=3) | ||
plot!(evo_t, 2.0.*ebg.*η0.*(1.0.-exp.(.-evo_t.*G0./η0)), linewidth=2.0) # analytical solution for VE loading | ||
plot!(evo_t, 2.0.*ebg.*η0.*ones(size(evo_t)), linewidth=2.0) # viscous flow stress | ||
display(plot(p1,p2)) | ||
end | ||
println(niter) | ||
return | ||
end | ||
# action | ||
Stokes2D_vep() |