Skip to content

Oussama-KIASSI/NBA-investment-predictor

Repository files navigation

To lunch the app on your local machine, do the following:

  • run pip install -r requirements.txt
  • run app.py

The project is organized as follow:

NBA-investment-predictor
│   .gitignore
│   app.py
│   EDA & Processing.ipynb
│   LICENSE
│   Model development.ipynb
│   README.md
│   requirements.txt
│   utils.py
│
├───Data
│   │   README.md
│   │
│   ├───Processed
│   │       Metadata.md
│   │       nba_logreg.csv
│   │       nba_logreg_selected.csv
│   │
│   └───Raw
│           Metadata.md
│           nba_logreg.csv
│
├───Models
│   │   Pipeline.pkl
│   │   README.md
│   │
│   ├───Baseline
│   │       DecisionTreeClassifier.pkl
│   │       KNeighborsClassifier.pkl
│   │       LGBMClassifier.pkl
│   │       LogisticRegression.pkl
│   │       RandomForestClassifier.pkl
│   │       SGDClassifier.pkl
│   │       SVC.pkl
│   │       XGBClassifier.pkl
│   │
│   ├───Scaler
│   │       MinMaxScaler.pkl
│   │
│   └───Tuned Models
│           SGDClassifier.pkl
│           SVC.pkl
│
└───templates
    │   form.html
    │
    └───helpers
            generate_fields.html
  • I wrote utils.py that groups useful functions for our notebooks.
  • I created notebooks for Exploratory Data Analysis, Preprocessing and Models development.
  • I developped app.py for model deployment, you may run it on your local machine for prediction.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published