To lunch the app on your local machine, do the following:
- run pip install -r requirements.txt
- run app.py
The project is organized as follow:
NBA-investment-predictor
│ .gitignore
│ app.py
│ EDA & Processing.ipynb
│ LICENSE
│ Model development.ipynb
│ README.md
│ requirements.txt
│ utils.py
│
├───Data
│ │ README.md
│ │
│ ├───Processed
│ │ Metadata.md
│ │ nba_logreg.csv
│ │ nba_logreg_selected.csv
│ │
│ └───Raw
│ Metadata.md
│ nba_logreg.csv
│
├───Models
│ │ Pipeline.pkl
│ │ README.md
│ │
│ ├───Baseline
│ │ DecisionTreeClassifier.pkl
│ │ KNeighborsClassifier.pkl
│ │ LGBMClassifier.pkl
│ │ LogisticRegression.pkl
│ │ RandomForestClassifier.pkl
│ │ SGDClassifier.pkl
│ │ SVC.pkl
│ │ XGBClassifier.pkl
│ │
│ ├───Scaler
│ │ MinMaxScaler.pkl
│ │
│ └───Tuned Models
│ SGDClassifier.pkl
│ SVC.pkl
│
└───templates
│ form.html
│
└───helpers
generate_fields.html
- I wrote utils.py that groups useful functions for our notebooks.
- I created notebooks for Exploratory Data Analysis, Preprocessing and Models development.
- I developped app.py for model deployment, you may run it on your local machine for prediction.