This Business Intelligence Project is about medical products sales intelligence. We will be working on two fact tables and four dimensions using Python for data exploration, Microsoft Azure as a cloud provider to host our solution, and Microsoft Power BI as a reporting tool.
To exploit this project follow these steps:
- Run pip install -r requirements.txt
- Create a ressource group in Azure
- Create the different cloud resources as shown in the report
- Azure Blob Storage
- Azure Data Factory
- Azure SQL Database
- Run create_data_warehouse.sql on Azure SQL Database you have created
- Connect SSMS to the Azure SQL Database
- Run the script
- Import the ETL pipeline file to Azure Data Factory
- Trigger the pipeline
- Connect the Sales.pbix file to the data warehouse
- Open the Sales.pbix file
- Change source settings to your Azure SQL Database
- Create a Microsoft Power BI Server workspace
- Create the application from the workspace
This project is organized as follows:
Medical-Sales-Intelligence
│ .gitignore
│ LICENSE
│ README.md
│ requirements.txt
│
├───Data
│ Customers.xlsx
│ Products.xlsx
│ Sales Managers.xlsx
│ Sales Reps and Geographies.xlsx
│ Sales.xlsx
│ Targets.xlsx
│
├───Development
│ ├───Data Orchestration
│ │ ETL.zip
│ │ ETL_support_live.zip
│ │
│ ├───Data Warehousing
│ │ create_data_warehouse.sql
│ │
│ ├───Exploratory Data Analysis
│ │ Data understanding.ipynb
│ │ EDA Customers.ipynb
│ │ EDA Products.ipynb
│ │ EDA Sales.ipynb
│ │ EDA SalesManagers.ipynb
│ │ EDA SalesRepsandGeographies.ipynb
│ │ EDA Targets.ipynb
│ │ utils.py
│ │
│ └───Reporting
│ Sales.pbix
│ Sales.pdf
│
└───Report
Presentation.pptx
Project Report.pdf