Skip to content

Commit

Permalink
Add thesis for eo foundation models
Browse files Browse the repository at this point in the history
  • Loading branch information
iprapas committed Dec 12, 2023
1 parent 9b1d7f0 commit ceb690f
Showing 1 changed file with 19 additions and 9 deletions.
28 changes: 19 additions & 9 deletions content/education/theses/2023-06-11-foundation-models/index.md
Original file line number Diff line number Diff line change
@@ -1,18 +1,28 @@
---
title: Leveraging foundation models for earth observation applications
title: Leveraging Foundation Models for Earth Observation Applications
date: 2023-11-06
show_date: false
show_related: true
profile: false
tags: ['wildfires']
tags: ['foundation models', 'earth observation', 'EO', 'climate']
draft: false
---
Supervisors: [Ioannis Prapas](/author/ioannis-prapas/), [Ioannis Papoutsis](/author/ioannis-papoutsis)

Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Recently we've witnessed the rise of foundation models [^1] for text (e.g. [chatGPT](https://openai.com/blog/chatgpt), [Llama](https://ai.meta.com/llama/)) and images (e.g. [Dalle](https://openai.com/dall-e-3), Stable Diffusion [^2]), even video (e.g. [Stable Video Diffusion](https://stability.ai/news/stable-video-diffusion-open-ai-video-model)).

<!--more-->
Foundation models are also being developed for other fields (e.g. Medical science [^3]), and particularly for Earth Observation[^4] [^4.5] and Climate Science[^5]. The goal of this thesis is to investigate the maturity of these models and evaluating them in real-world downstream applications, like burned area mapping[^6], flood detection[^7] [^8], wildfire forecasting[^9] [^10], volcanic unrest detection[^11] [^12] or similar applications with impact for social good. Beyond evaluation, this thesis is about devising ways to fine-tune these large models to work better for downstream tasks.

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer tempus augue non tempor egestas. Proin nisl nunc, dignissim in accumsan dapibus, auctor ullamcorper neque. Quisque at elit felis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia curae; Aenean eget elementum odio. Cras interdum eget risus sit amet aliquet. In volutpat, nisl ut fringilla dignissim, arcu nisl suscipit ante, at accumsan sapien nisl eu eros.

Sed eu dui nec ligula bibendum dapibus. Nullam imperdiet auctor tortor, vel cursus mauris malesuada non. Quisque ultrices euismod dapibus. Aenean sed gravida risus. Sed nisi tortor, vulputate nec quam non, placerat porta nisl. Nunc varius lobortis urna, condimentum facilisis ipsum molestie eu. Ut molestie eleifend ligula sed dignissim. Duis ut tellus turpis. Praesent tincidunt, nunc sed congue malesuada, mauris enim maximus massa, eget interdum turpis urna et ante. Morbi sem nisl, cursus quis mollis et, interdum luctus augue. Aliquam laoreet, leo et accumsan tincidunt, libero neque aliquet lectus, a ultricies lorem mi a orci.

Mauris dapibus sem vel magna convallis laoreet. Donec in venenatis urna, vitae sodales odio. Praesent tortor diam, varius non luctus nec, bibendum vel est. Quisque id sem enim. Maecenas at est leo. Vestibulum tristique pellentesque ex, blandit placerat nunc eleifend sit amet. Fusce eget lectus bibendum, accumsan mi quis, luctus sem. Etiam vitae nulla scelerisque, eleifend odio in, euismod quam. Etiam porta ullamcorper massa, vitae gravida turpis euismod quis. Mauris sodales sem ac ultrices viverra. In placerat ultrices sapien. Suspendisse eu arcu hendrerit, luctus tortor cursus, maximus dolor. Proin et velit et quam gravida dapibus. Donec blandit justo ut consequat tristique.
[^1]: Bommasani, Rishi, et al. "On the opportunities and risks of foundation models." arXiv preprint arXiv:2108.07258 (2021).
[^2]: Rombach, Robin, et al. "High-resolution image synthesis with latent diffusion models." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.
[^3]: Moor, Michael, et al. "Foundation models for generalist medical artificial intelligence." Nature 616.7956 (2023): 259-265.
[^4]: https://www.earthdata.nasa.gov/news/impact-ibm-hls-foundation-model
[^4.5]: Liu, Fan, et al. "RemoteCLIP: A Vision Language Foundation Model for Remote Sensing." arXiv preprint arXiv:2306.11029 (2023).
[^5]: Nguyen, Tung, et al. "ClimaX: A foundation model for weather and climate." arXiv preprint arXiv:2301.10343 (2023).
[^6]: Sdraka, Maria, et al. "FLOGA: A machine learning ready dataset, a benchmark and a novel deep learning model for burnt area mapping with Sentinel-2." arXiv preprint arXiv:2311.03339 (2023).
[^7]: Bountos, Nikolaos Ioannis, et al. "Kuro Siwo: 12.1 billion $ m^ 2$ under the water. A global multi-temporal satellite dataset for rapid flood mapping." arXiv preprint arXiv:2311.12056 (2023).
[^8]: Li, Wenwen, et al. "Assessment of a new GeoAI foundation model for flood inundation mapping." Proceedings of the 6th ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery. 2023.
[^9]: Kondylatos, Spyros, et al. "Mesogeos: A multi-purpose dataset for data-driven wildfire modeling in the Mediterranean." arXiv preprint arXiv:2306.05144 (2023).
[^10]: Prapas, Ioannis, et al. "TeleViT: Teleconnection-driven Transformers Improve Subseasonal to Seasonal Wildfire Forecasting." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023.
[^11]: Bountos, Nikolaos Ioannis, et al. "Self-supervised contrastive learning for volcanic unrest detection." IEEE Geoscience and Remote Sensing Letters 19 (2021): 1-5.
[^12]: Bountos, Nikolaos Ioannis, et al. "Hephaestus: A large scale multitask dataset towards InSAR understanding." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

0 comments on commit ceb690f

Please sign in to comment.