Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Mixtral support #1644

Draft
wants to merge 4 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 36 additions & 3 deletions include/ctranslate2/layers/transformer.h
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,32 @@ namespace ctranslate2 {
const bool _tensor_parallel;
};

class Moe : public Layer
{
public:
Moe(const models::Model& model,
const std::string& scope,
const bool pre_norm = true,
const ops::ActivationType activation_type = ops::ActivationType::ReLU);

void operator()(StorageView& input, StorageView& output) const;
DataType output_type() const override {
return _ffn_layers.back()->output_type();
}

dim_t output_size() const override {
return _ffn_layers.back()->output_size();
}

private:
const std::unique_ptr<const LayerNorm> _layer_norm;
const Dense _gate;
const bool _pre_norm;
const ops::ActivationType _activation_type;
const dim_t _num_experts_per_tok;
const std::vector<std::unique_ptr<const FeedForwardNetwork>> _ffn_layers;
};

class TransformerEncoderLayer : public Layer
{
public:
Expand Down Expand Up @@ -96,11 +122,17 @@ namespace ctranslate2 {
dim_t offset = 0) const;

DataType output_type() const override {
return _ff.output_type();
if (_ff)
return _ff->output_type();
else
return _moe->output_type();
}

dim_t output_size() const override {
return _ff.output_size();
if (_ff)
return _ff->output_size();
else
return _moe->output_size();
}

bool has_cross_attention() const {
Expand All @@ -117,7 +149,8 @@ namespace ctranslate2 {
const std::unique_ptr<const LayerNorm> _input_layer_norm;
const std::unique_ptr<const LayerNorm> _post_attention_layer_norm;
const std::unique_ptr<const MultiHeadAttention> _encoder_attention;
const FeedForwardNetwork _ff;
const std::unique_ptr<Moe> _moe;
const std::unique_ptr<FeedForwardNetwork> _ff;
};

class TransformerEncoder : public Encoder
Expand Down
106 changes: 106 additions & 0 deletions python/ctranslate2/converters/transformers.py
Original file line number Diff line number Diff line change
Expand Up @@ -1568,6 +1568,112 @@ def set_decoder(self, spec, module):
gc.collect()


@register_loader("MixtralConfig")
class MistralLoader(ModelLoader):
@property
def architecture_name(self):
return "MixtralForCausalLM"

def get_model_spec(self, model):
num_layers = model.config.num_hidden_layers

num_heads = model.config.num_attention_heads
num_heads_kv = getattr(model.config, "num_key_value_heads", num_heads)
if num_heads_kv == num_heads:
num_heads_kv = None

sliding_window = getattr(model.config, "sliding_window", 0)

rope_scaling = getattr(model.config, "rope_scaling", None)
if rope_scaling:
rotary_scaling_type = _SUPPORTED_ROPE_SCALING.get(rope_scaling["type"])
rotary_scaling_factor = rope_scaling["factor"]

if rotary_scaling_type is None:
raise NotImplementedError(
"RoPE scaling type '%s' is not yet implemented. "
"The following RoPE scaling types are currently supported: %s"
% (rope_scaling["type"], ", ".join(_SUPPORTED_ROPE_SCALING.keys()))
)
else:
rotary_scaling_type = None
rotary_scaling_factor = 1

spec = transformer_spec.TransformerDecoderModelSpec.from_config(
num_layers,
num_heads,
activation=common_spec.Activation.SWISH,
pre_norm=True,
ffn_glu=True,
rms_norm=True,
rotary_dim=0,
rotary_interleave=False,
rotary_scaling_type=rotary_scaling_type,
rotary_scaling_factor=rotary_scaling_factor,
rotary_base=getattr(model.config, "rope_theta", 10000),
num_heads_kv=num_heads_kv,
sliding_window=sliding_window,
num_local_experts=getattr(model.config, "num_local_experts", 8),
num_experts_per_tok=getattr(model.config, "num_experts_per_tok", 2)
)

self.set_decoder(spec.decoder, model.model)
self.set_linear(spec.decoder.projection, model.lm_head)
return spec

def get_vocabulary(self, model, tokenizer):
tokens = super().get_vocabulary(model, tokenizer)

extra_ids = model.config.vocab_size - len(tokens)
for i in range(extra_ids):
tokens.append("<extra_id_%d>" % i)

return tokens

def set_vocabulary(self, spec, tokens):
spec.register_vocabulary(tokens)

def set_config(self, config, model, tokenizer):
config.bos_token = tokenizer.bos_token
config.eos_token = tokenizer.eos_token
config.unk_token = tokenizer.unk_token
config.layer_norm_epsilon = model.config.rms_norm_eps

def set_layer_norm(self, spec, layer_norm):
spec.gamma = layer_norm.weight

def set_decoder(self, spec, module):
spec.scale_embeddings = False
self.set_embeddings(spec.embeddings, module.embed_tokens)
self.set_layer_norm(spec.layer_norm, module.norm)

for layer_spec, layer in zip(spec.layer, module.layers):
self.set_layer_norm(
layer_spec.self_attention.layer_norm, layer.input_layernorm
)
self.set_layer_norm(
layer_spec.moe.layer_norm, layer.post_attention_layernorm
)

wq = layer.self_attn.q_proj.weight
wk = layer.self_attn.k_proj.weight
wv = layer.self_attn.v_proj.weight
wo = layer.self_attn.o_proj.weight

layer_spec.self_attention.linear[0].weight = torch.cat([wq, wk, wv])
layer_spec.self_attention.linear[1].weight = wo

self.set_linear(layer_spec.moe.gate, layer.block_sparse_moe.gate)
for ffn_spec, ffn in zip(layer_spec.moe.experts, layer.block_sparse_moe.experts):
self.set_linear(ffn_spec.linear_0, ffn.w1)
self.set_linear(ffn_spec.linear_0_noact, ffn.w3)
self.set_linear(ffn_spec.linear_1, ffn.w2)

delattr(layer, "self_attn")
delattr(layer, "block_sparse_moe")
gc.collect()


@register_loader("MixFormerSequentialConfig")
class MixFormerSequentialLoader(ModelLoader):
@property
Expand Down
Loading
Loading