Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add functions for spherical and Vincenty distance. #797

Merged
merged 1 commit into from
Mar 22, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
127 changes: 127 additions & 0 deletions src/transform.js
Original file line number Diff line number Diff line change
Expand Up @@ -486,4 +486,131 @@ transform.affineInverse = function (def, coords) {
return coords;
};

/**
* Compute the distance on the surface on a sphere. The sphere is the major
* radius of a specified ellipsoid. Altitude is ignored.
*
* @param {geo.geoPosition} pt1 The first point.
* @param {geo.geoPosition} pt2 The second point.
* @param {string|geo.transform} [gcs] `undefined` to use the same gcs as the
* ellipsoid, otherwise the gcs of the points.
* @param {string|geo.transform} [baseGcs='EPSG:4326'] the gcs of the
* ellipsoid.
* @param {object} [ellipsoid=proj4.WGS84] An object with at least `a` and one
* of `b`, `f`, or `rf` (1 / `f`) -- this works with proj4 ellipsoid
* definitions.
* @param {number} [maxIterations=100] Maximum number of iterations to use
* to test convergence.
* @returns {number} The distance in meters (or whatever units the ellipsoid
* was specified in.
*/
transform.sphericalDistance = function (pt1, pt2, gcs, baseGcs, ellipsoid) {
baseGcs = baseGcs || 'EPSG:4326';
ellipsoid = ellipsoid || proj4.WGS84;
gcs = gcs || baseGcs;
if (gcs !== baseGcs) {
var pts = transform.transformCoordinates(gcs, baseGcs, [pt1, pt2]);
pt1 = pts[0];
pt2 = pts[1];
}
// baseGcs must be in degrees or this will be wrong
var phi1 = pt1.y * Math.PI / 180,
phi2 = pt2.y * Math.PI / 180,
lambda = (pt2.x - pt1.x) * Math.PI / 180,
sinphi1 = Math.sin(phi1), cosphi1 = Math.cos(phi1),
sinphi2 = Math.sin(phi2), cosphi2 = Math.cos(phi2);
var sigma = Math.atan2(
Math.pow(
Math.pow(cosphi2 * Math.sin(lambda), 2) +
Math.pow(cosphi1 * sinphi2 - sinphi1 * cosphi2 * Math.cos(lambda), 2), 0.5),
sinphi1 * sinphi2 + cosphi1 * cosphi2 * Math.cos(lambda)
);
return ellipsoid.a * sigma;
};

/**
* Compute the Vincenty distance on the surface on an ellipsoid. Altitude is
* ignored.
*
* @param {geo.geoPosition} pt1 The first point.
* @param {geo.geoPosition} pt2 The second point.
* @param {string|geo.transform} [gcs] `undefined` to use the same gcs as the
* ellipsoid, otherwise the gcs of the points.
* @param {string|geo.transform} [baseGcs='EPSG:4326'] the gcs of the
* ellipsoid.
* @param {object} [ellipsoid=proj4.WGS84] An object with at least `a` and one
* of `b`, `f`, or `rf` (1 / `f`) -- this works with proj4 ellipsoid
* definitions.
* @param {number} [maxIterations=100] Maximum number of iterations to use
* to test convergence.
* @returns {object} An object with `distance` in meters (or whatever units the
* ellipsoid was specified in), `alpha1` and `alpha2`, the azimuths at the
* two points in radians. The result may be `undefined` if the formula
* fails to converge, which can happen near antipodal points.
*/
transform.vincentyDistance = function (pt1, pt2, gcs, baseGcs, ellipsoid, maxIterations) {
baseGcs = baseGcs || 'EPSG:4326';
ellipsoid = ellipsoid || proj4.WGS84;
maxIterations = maxIterations || 100;
gcs = gcs || baseGcs;
if (gcs !== baseGcs) {
var pts = transform.transformCoordinates(gcs, baseGcs, [pt1, pt2]);
pt1 = pts[0];
pt2 = pts[1];
}
var a = ellipsoid.a,
b = ellipsoid.b || ellipsoid.a * (1.0 - (ellipsoid.f || 1.0 / ellipsoid.rf)),
f = ellipsoid.f || (ellipsoid.rf ? 1.0 / ellipsoid.rf : 1.0 - b / a),
// baseGcs must be in degrees or this will be wrong
phi1 = pt1.y * Math.PI / 180,
phi2 = pt2.y * Math.PI / 180,
L = (((pt2.x - pt1.x) % 360 + 360) % 360) * Math.PI / 180,
U1 = Math.atan((1 - f) * Math.tan(phi1)), // reduced latitude
U2 = Math.atan((1 - f) * Math.tan(phi2)),
sinU1 = Math.sin(U1), cosU1 = Math.cos(U1),
sinU2 = Math.sin(U2), cosU2 = Math.cos(U2),
lambda = L, lastLambda = L + Math.PI * 2,
sinSigma, cosSigma, sigma, sinAlpha, cos2alpha, cos2sigmasubm, C,
u2, A, B, deltaSigma, iter;
if (phi1 === phi2 && !L) {
return {
distance: 0,
alpha1: 0,
alpha2: 0
};
}
for (iter = maxIterations; iter > 0 && Math.abs(lambda - lastLambda) > 1e-12; iter -= 1) {
sinSigma = Math.pow(
Math.pow(cosU2 * Math.sin(lambda), 2) +
Math.pow(cosU1 * sinU2 - sinU1 * cosU2 * Math.cos(lambda), 2), 0.5);
cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * Math.cos(lambda);
sigma = Math.atan2(sinSigma, cosSigma);
sinAlpha = cosU1 * cosU2 * Math.sin(lambda) / sinSigma;
cos2alpha = 1 - Math.pow(sinAlpha, 2);
// cos2alpha is zero only when phi1 and phi2 are nearly zero. In this
// case, sinU1 and sinU2 are nearly zero and the the second term can be
// dropped
cos2sigmasubm = cosSigma - (cos2alpha ? 2 * sinU1 * sinU2 / cos2alpha : 0);
C = f / 16 * cos2alpha * (4 + f * (4 - 3 * cos2alpha));
lastLambda = lambda;
lambda = L + (1 - C) * f * sinAlpha * (sigma + C * sinSigma * (
cos2sigmasubm + C * cosSigma * (-1 + 2 * Math.pow(cos2sigmasubm, 2))));
}
if (!iter) { // failure to converge
return;
}
u2 = cos2alpha * (a * a - b * b) / (b * b);
A = 1 + u2 / 16384 * (4096 + u2 * (-768 + u2 * (320 - 175 * u2)));
B = u2 / 1024 * (256 + u2 * (-128 + u2 * (74 - 47 * u2)));
deltaSigma = B * sinSigma * (cos2sigmasubm + B / 4 * (
cosSigma * (-1 + 2 * Math.pow(cos2sigmasubm, 2)) -
B / 6 * cos2sigmasubm * (-3 + 4 * sinSigma * sinSigma) *
(-3 + 4 * Math.pow(cos2sigmasubm, 2))));
return {
distance: b * A * (sigma - deltaSigma),
alpha1: Math.atan2(cosU2 * Math.sin(lambda), cosU1 * sinU2 - sinU1 * cosU2 * Math.cos(lambda)),
alpha2: Math.atan2(cosU1 * Math.sin(lambda), -sinU1 * cosU2 + cosU1 * sinU2 * Math.cos(lambda))
};
};

module.exports = transform;
3 changes: 2 additions & 1 deletion src/util/index.js
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
var $ = require('jquery');
var proj4 = require('proj4');

var throttle = require('./throttle');
var mockVGL = require('./mockVGL');
Expand Down Expand Up @@ -1320,7 +1321,7 @@ var util = module.exports = {
* Radius of the earth in meters, from the equatorial radius of SRID 4326.
* @memberof geo.util
*/
radiusEarth: 6378137,
radiusEarth: proj4.WGS84.a,

/**
* A regular expression string that will parse a number (integer or floating
Expand Down
87 changes: 87 additions & 0 deletions tests/cases/transform.js
Original file line number Diff line number Diff line change
Expand Up @@ -324,4 +324,91 @@ describe('geo.transform', function () {
expect(res[1]).toEqual({x: 0, y: -4 / 3, z: 6 / 4});
});
});

describe('vincentyDistance', function () {
it('test distance measurement', function () {
var result;
result = geo.transform.vincentyDistance(
{x: -71.0693514, y: 42.3541165}, // Boston
{x: -73.9680804, y: 40.7791472} // New York
);
expect(result.distance).toBeCloseTo(298396.057);
expect(result.alpha1).toBeCloseTo(-2.180);
expect(result.alpha2).toBeCloseTo(-2.213);
expect(geo.transform.vincentyDistance(
{x: -73.9680804, y: 40.7791472},
{x: -71.0693514, y: 42.3541165}
).distance).toBeCloseTo(298396.057);
result = geo.transform.vincentyDistance(
{x: -74, y: 42},
{x: -71, y: 42}
);
expect(result.alpha1).toBeCloseTo(1.553);
expect(result.alpha2).toBeCloseTo(1.588);
// test equal points
expect(geo.transform.vincentyDistance(
{x: -71.0693514, y: 42.3541165},
{x: -71.0693514, y: 42.3541165}
).distance).toBe(0);
// test convergence failure
expect(geo.transform.vincentyDistance(
{x: 0, y: 0},
{x: -179.5, y: 0.5}
)).toBe(undefined);
expect(geo.transform.vincentyDistance(
{x: 0, y: 0},
{x: -179.5, y: 0.5},
undefined, undefined, undefined, 200
).distance).toBeCloseTo(19936288.579);
// test near-equator distances
expect(geo.transform.vincentyDistance(
{x: 0, y: 1e-7},
{x: 90, y: 1e-7}
).distance).toBeCloseTo(geo.util.radiusEarth * Math.PI / 2);
// test using a different ellipsoid
expect(geo.transform.vincentyDistance(
{x: -71.0693514, y: 42.3541165},
{x: -73.9680804, y: 40.7791472},
'EPSG:4326',
'+proj=longlat +ellps=clrk66 +datum=NAD27 +no_defs',
{a: 6378206.4, b: 6356583.8}
).distance).toBeCloseTo(298394.412);
});
});

describe('sphericalDistance', function () {
it('test distance measurement', function () {
expect(geo.transform.sphericalDistance(
{x: -71.0693514, y: 42.3541165}, // Boston
{x: -73.9680804, y: 40.7791472} // New York
)).toBeCloseTo(298342.833);
expect(geo.transform.sphericalDistance(
{x: -73.9680804, y: 40.7791472},
{x: -71.0693514, y: 42.3541165}
)).toBeCloseTo(298342.833);
// test equal points
expect(geo.transform.sphericalDistance(
{x: -71.0693514, y: 42.3541165},
{x: -71.0693514, y: 42.3541165}
)).toBe(0);
// test near antipodal points
expect(geo.transform.sphericalDistance(
{x: 0, y: 0},
{x: -179.5, y: 0.5}
)).toBeCloseTo(19958794.076);
// test near-equator distances
expect(geo.transform.sphericalDistance(
{x: 0, y: 1e-7},
{x: 90, y: 1e-7}
)).toBeCloseTo(geo.util.radiusEarth * Math.PI / 2);
// test using a different ellipsoid
expect(geo.transform.sphericalDistance(
{x: -71.0693514, y: 42.3541165},
{x: -73.9680804, y: 40.7791472},
'EPSG:4326',
'+proj=longlat +ellps=clrk66 +datum=NAD27 +no_defs',
{a: 6378206.4, b: 6356583.8}
)).toBeCloseTo(298340.559);
});
});
});