Skip to content

Commit

Permalink
Clean code
Browse files Browse the repository at this point in the history
Update README.md


Clean code
  • Loading branch information
czczup committed Oct 28, 2024
1 parent 0c81d31 commit e91a2af
Show file tree
Hide file tree
Showing 12 changed files with 1,261 additions and 1,249 deletions.
17 changes: 12 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,16 @@

# <img width="60" alt="image" src="https://github.com/OpenGVLab/InternVL/assets/47669167/7037290e-f474-4d11-b90f-1d8316087bf8"> InternVL Family: Closing the Gap to Commercial Multimodal Models with Open-Source Suites —— A Pioneering Open-Source Alternative to GPT-4o

[\[🔥 Mini-InternVL\]](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat/shell/mini_internvl) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🤔 FAQs\]](https://internvl.readthedocs.io/en/latest/tutorials/faqs.html) [\[🚀 InternVL2 Blog\]](https://internvl.github.io/blog/2024-07-02-InternVL-2.0/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[📖 Document\]](https://internvl.readthedocs.io/en/latest/) [\[🌐 API\]](https://internvl.readthedocs.io/en/latest/get_started/internvl_chat_api.html) [\[🚀 Quick Start\]](#quick-start-with-huggingface)
<div align="center">
<img width="500" alt="image" src="https://github.com/user-attachments/assets/930e6814-8a9f-43e1-a284-118a5732daa4">
<br>
</div>

[\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🤔 FAQs\]](https://internvl.readthedocs.io/en/latest/tutorials/faqs.html) [\[🚀 InternVL2 Blog\]](https://internvl.github.io/blog/2024-07-02-InternVL-2.0/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[📖 Document\]](https://internvl.readthedocs.io/en/latest/) [\[🌐 API\]](https://internvl.readthedocs.io/en/latest/get_started/internvl_chat_api.html) [\[🚀 Quick Start\]](#quick-start-with-huggingface)

[\[🔥 Mini-InternVL Report\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821) [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238) [\[📖 2.0 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[📖 1.5 中文解读\]](https://zhuanlan.zhihu.com/p/699439759) [\[📖 1.0 中文解读\]](https://zhuanlan.zhihu.com/p/702946079)
[\[🔥 Mini-InternVL Report\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 1.5 Report\]](https://arxiv.org/abs/2404.16821) [\[📜 InternVL 1.0 Paper\]](https://arxiv.org/abs/2312.14238)

[\[📖 2.0 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[📖 1.5 中文解读\]](https://zhuanlan.zhihu.com/p/699439759) [\[📖 1.0 中文解读\]](https://zhuanlan.zhihu.com/p/702946079)

[Switch to the Chinese version (切换至中文版)](/README_zh.md)

Expand All @@ -16,9 +23,10 @@
</div>

## News 🚀🚀🚀
- `2024/10/21`: We release the Mini-InternVL series, which includes three chat models: __Mini-InternVL-1B__, __Mini-InternVL-2B__ and __Mini-InternVL-4B__. These models achieve impressive performance with minimal size: the 4B model achieves 90% of the performance with just 5% of the model size. For more details, please check our [Project page](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat/shell/mini_internvl) and [Document](https://internvl.readthedocs.io/en/latest/internvl2.0/domain_adaptation.html).

- `2024/10/21`: We release the Mini-InternVL series. These models achieve impressive performance with minimal size: the 4B model achieves 90% of the performance with just 5% of the model size. For more details, please check our [project page](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat/shell/mini_internvl) and [document](https://internvl.readthedocs.io/en/latest/internvl2.0/domain_adaptation.html).
- `2024/08/01`: The [Chartmimic](https://chartmimic.github.io/) team evaluated the InternVL2 series models on their benchmark. The InternVL2-26B and 76B models achieved the top two performances among open-source models, with the InternVL2 76B model surpassing GeminiProVision and exhibiting comparable results to Claude-3-opus.
- `2024/08/01`: InternVL2-Pro achieved the SOTA performance among open-source models on the [CharXiv](https://charxiv.github.io/#leaderboard) dataset, surpassing some well-known closed-source models such as GPT-4V, Gemini 1.5 Flash, and Claude 3 Sonnet.
- `2024/08/01`: InternVL2-Pro achieved the SOTA performance among open-source models on the [CharXiv](https://charxiv.github.io/#leaderboard) dataset, surpassing many closed-source models such as GPT-4V, Gemini 1.5 Flash, and Claude 3 Sonnet.
- `2024/07/24`: The [MLVU](https://github.com/JUNJIE99/MLVU) team evaluated InternVL-1.5 on their benchmark. The average performance on the multiple-choice task was 50.4%, while the performance on the generative tasks was 4.02. The performance on the multiple-choice task ranked #1 among all open-source MLLMs.
- `2024/07/18`: 🔥🔥 InternVL2-40B achieved SOTA performance among open-source models on the [Video-MME](https://github.com/BradyFU/Video-MME) dataset, scoring 61.2 when inputting 16 frames and 64.4 when inputting 32 frames. It significantly outperforms other open-source models and is the closest open-source model to GPT-4o mini.
- `2024/07/18`: 🔥 InternVL2-Pro achieved the SOTA performance on the [DocVQA](https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=1) and [InfoVQA](https://rrc.cvc.uab.es/?ch=17&com=evaluation&task=3) benchmarks.
Expand All @@ -29,7 +37,6 @@
- `2024/05/13`: InternVL 1.0 can now be used as the [text encoder](https://huggingface.co/OpenGVLab/InternVL-14B-224px) for diffusion models to support multilingual generation natively in over 110 languages worldwide. See [MuLan](https://github.com/mulanai/MuLan) for more details.
- `2024/04/18`: InternVL-Chat-V1-5 has been released at [HF link](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5), approaching the performance of GPT-4V and Gemini Pro on various benchmarks like MMMU, DocVQA, ChartQA, MathVista, etc.
- `2024/02/27`: InternVL is accepted by CVPR 2024 (Oral)! 🎉
- `2024/02/24`: InternVL-Chat models have been included in the [VLMEvalKit](https://github.com/open-compass/VLMEvalKit).
- `2024/02/21`: [InternVL-Chat-V1-2-Plus](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus) achieved SOTA performance on MathVista (59.9), MMBench (83.8), and MMVP (58.7). See our [blog](https://internvl.github.io/blog/2024-02-21-InternVL-1.2/) for more details.
- `2024/02/12`: InternVL-Chat-V1-2 has been released. It achieves 51.6 on MMMU val and 82.3 on MMBench test. For more details, please refer to our [blog](https://internvl.github.io/blog/2024-02-21-InternVL-1.2/) and [SFT data](./internvl_chat#prepare-training-datasets). The model is now available on [HuggingFace](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2), and both training / evaluation data and scripts are open-sourced.
- `2024/01/24`: InternVL-Chat-V1-1 is released, it supports Chinese and has stronger OCR capability, see [here](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1).
Expand Down
18 changes: 15 additions & 3 deletions README_zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,9 +2,16 @@

# <img width="60" alt="image" src="https://github.com/OpenGVLab/InternVL/assets/47669167/7037290e-f474-4d11-b90f-1d8316087bf8"> InternVL家族:通过开源组件缩小与商业多模态模型的差距 —— GPT-4o的开源替代方案

<div align="center">
<img width="500" alt="image" src="https://github.com/user-attachments/assets/930e6814-8a9f-43e1-a284-118a5732daa4">
<br>
</div>

[\[🆕 博客\]](https://internvl.github.io/blog/) [\[🤔 常见问题\]](https://internvl.readthedocs.io/en/latest/tutorials/faqs.html) [\[🚀 InternVL2 博客\]](https://internvl.github.io/blog/2024-07-02-InternVL-2.0/) [\[🗨️ 对话Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[📖 文档\]](https://internvl.readthedocs.io/en/latest/) [\[🌐 API\]](https://internvl.readthedocs.io/en/latest/get_started/internvl_chat_api.html) [\[🚀 快速开始\]](#使用-huggingface-快速开始)

[\[📜 InternVL 1.0 论文\]](https://arxiv.org/abs/2312.14238) [\[📜 InternVL 1.5 报告\]](https://arxiv.org/abs/2404.16821) [\[📖 1.0 中文解读\]](https://zhuanlan.zhihu.com/p/702946079) [\[📖 1.5 中文解读\]](https://zhuanlan.zhihu.com/p/699439759) [\[📖 2.0 中文解读\]](https://zhuanlan.zhihu.com/p/706547971)
[\[🔥 Mini-InternVL 报告\]](https://arxiv.org/abs/2410.16261) [\[📜 InternVL 1.5 报告\]](https://arxiv.org/abs/2404.16821) [\[📜 InternVL 1.0 论文\]](https://arxiv.org/abs/2312.14238)

[\[📖 2.0 中文解读\]](https://zhuanlan.zhihu.com/p/706547971) [\[📖 1.5 中文解读\]](https://zhuanlan.zhihu.com/p/699439759) [\[📖 1.0 中文解读\]](https://zhuanlan.zhihu.com/p/702946079)

[Switch to the English version (切换至英文版)](/README.md)

Expand All @@ -17,6 +24,7 @@

## 最新消息 🚀🚀🚀

- `2024/10/21`: 我们发布了 Mini-InternVL 系列。这些模型在保持极小模型体积的同时实现了出色的性能:4B 模型仅用 5% 的模型大小便达到了 90% 的性能。有关更多详细信息,请查看我们的 [项目页面](https://github.com/OpenGVLab/InternVL/tree/main/internvl_chat/shell/mini_internvl)[文档](https://internvl.readthedocs.io/en/latest/internvl2.0/domain_adaptation.html)
- `2024/08/01`: [Chartmimic](https://chartmimic.github.io/) 团队在他们的基准测试中评估了 InternVL2 系列模型。InternVL2-26B 和 76B 模型在开源模型中取得了前两名的成绩,其中 InternVL2-Llama3-76B 模型超过了 GeminiProVision,并表现出与 Claude-3-opus 相当的结果。
- `2024/08/01`: InternVL2-Pro 在 [CharXiv](https://charxiv.github.io/#leaderboard) 数据集中实现了开源模型中的 SOTA 性能,也比部分知名闭源模型如 GPT-4V、Gemini 1.5 Flash、Claude 3 Sonnet 取得了更好成绩
- `2024/07/24`: [MLVU](https://github.com/JUNJIE99/MLVU)团队在它们的基准测试中评估了InternVL-1.5。在多项选择任务上的平均表现为50.4%,而在生成任务上的表现为4.02。多项选择任务的表现在所有开源多模态大语言模型中排名第一。
Expand All @@ -26,11 +34,9 @@
- `2024/06/19`: 我们提出了 Needle In A Multimodal Haystack ([MM-NIAH](https://github.com/OpenGVLab/MM-NIAH)),这是第一个针对模型关于长多模态文档理解能力的评测基准。
- `2024/05/30`: 我们发布了 [ShareGPT-4o](https://sharegpt4o.github.io/),这是一个大规模、高质量的多模态数据集。我们计划开源一批使用 GPT-4o 精心标注的数据,包括 200K 条图像详细描述、10K 条视频详细描述,以及 10K 条音频详细描述。
- `2024/05/29`: 我们开源了 Mini-InternVL 系列,包括以下两个对话模型:[Mini-InternVL-Chat-2B-V1-5](https://huggingface.co/OpenGVLab/Mini-InternVL-Chat-2B-V1-5)[Mini-InternVL-Chat-4B-V1-5](https://huggingface.co/OpenGVLab/Mini-InternVL-Chat-4B-V1-5)。这些模型在极小的尺寸下实现了令人印象深刻的性能:2B 模型以 8% 的模型尺寸实现了 80% 的性能,4B 模型以 16% 的模型尺寸实现了 90% 的性能。更多细节请查看我们的[博客](https://internvl.github.io/blog/2024-05-25-Mini-InternVL-1.5/)
- `2024/05/28`: 感谢 [lmdeploy](https://github.com/InternLM/lmdeploy) 团队提供的 AWQ 量化支持。InternVL 1.5 的 4-bit 模型发布在 [OpenGVLab/InternVL-Chat-V1-5-AWQ](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5-AWQ)
- `2024/05/13`: InternVL 1.0 现在可以作为扩散模型的 [文本编码器](https://huggingface.co/OpenGVLab/InternVL-14B-224px),支持全球超过 110 种语言的多语言生成。详情请看 [MuLan](https://github.com/mulanai/MuLan)
- `2024/04/18`: InternVL-Chat-V1-5 已经在 [HuggingFace](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-5) 发布,在 MMMU、DocVQA、ChartQA、MathVista 等各种基准测试中,性能接近 GPT-4V 和 Gemini Pro。
- `2024/02/27`: InternVL 已被 CVPR 2024 (Oral) 接收!🎉
- `2024/02/24`: InternVL-Chat 系列模型已经接入 [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) 评测框架。
- `2024/02/21`: [InternVL-Chat-V1-2-Plus](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2-Plus) 在 MathVista(59.9)、MMBench(83.8)和 MMVP(58.7)上实现了 SOTA 性能。详情请看我们的[博客](https://internvl.github.io/blog/2024-02-21-InternVL-1.2/)
- `2024/02/12`: InternVL-Chat-V1-2 已经发布,它在 MMMU 验证集上达到了 51.6,在 MMBench 测试集上达到了 82.3。 更多信息请参考我们的[博客](https://internvl.github.io/blog/2024-02-21-InternVL-1.2/)以及 [SFT 数据](./internvl_chat#prepare-training-datasets)。该模型已经在 [HuggingFace](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-2) 发布,训练、测评的数据和脚本均已开源。
- `2024/01/24`: InternVL-Chat-V1-1 已经发布,它支持中文对话,并具备强大的 OCR 能力,详情请看[这里](https://huggingface.co/OpenGVLab/InternVL-Chat-V1-1)
Expand Down Expand Up @@ -929,6 +935,12 @@ print(f'User: {question}\nAssistant: {response}')
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@article{gao2024mini,
title={Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5\% Parameters and 90\% Performance},
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
journal={arXiv preprint arXiv:2410.16261},
year={2024}
}
```

## 致谢
Expand Down
Loading

0 comments on commit e91a2af

Please sign in to comment.