This a official Pytorch implementation of our paper "DiffRate : Differentiable Compression Rate for Efficient Vision Transformers"
Previous methods typically focus on either pruning or merging tokens using hand-picked compression rate with the guidance of performance. But DiffRate can leverages both approaches simultaneously to achieve more effective compression using the differentiable compression rate with gradient optimization.
- python >= 3.8
- pytorch >= 1.12.1 # For scatter_reduce
- torchvision # With matching version for your pytorch install
- timm == 0.4.5 # Might work on other versions, but this is what we tested
- jupyter # For example notebooks
- scipy # For visualization and sometimes torchvision requires it
- termcolor # For logging with color
- The ImageNet dataset should be prepared as follows:
ImageNet
├── train
│ ├── folder 1 (class 1)
│ ├── folder 2 (class 2)
│ ├── ...
├── val
│ ├── folder 1 (class 1)
│ ├── folder 2 (class 2)
│ ├── ...
Our proposed DiffRate is designed to operate utilizing the officially endorsed pre-trained models of MAE and DeiT. To facilitate seamless integration, our code is programmed to automatically download and load these pre-trained models. However, users who prefer manual downloads can acquire the pre-trained MAE models via this link, and the pre-trained DeiT models through this link.
We provide the discovered compression rates in the compression_rate.json file. To evaluate these rates, utilize the --load_compression_rate
option, which will load the appropriate compression rate from compression_rate.json based on the specified model
and target_flops
.
DeiT-S
For the ViT-S (DeiT)
model, we currently offer support for the --target_flops
option with {2.3,2.5,2.7,2.9,3.1}
. To illustrate, an example evaluating the ViT-S (DeiT)
model with 2.9G
FLOPs would be:
python main.py --eval --load_compression_rate --data-path $path_to_imagenet$ --model vit_deit_small_patch16_224 --target_flops 2.9
This should give:
Acc@1 79.538 Acc@5 94.828 loss 0.902 flops 2.905
DeiT-B
For the ViT-B (DeiT)
model, we currently offer support for the --target_flops
option with {8.7,10.0,10.4,11.5,12.5}
. To illustrate, an example evaluating the ViT-B (DeiT)
model with 11.5G
FLOPs would be:
python main.py --eval --load_compression_rate --data-path $path_to_imagenet$ --model vit_deit_base_patch16_224 --target_flops 11.5
This should give:
Acc@1 81.498 Acc@5 95.404 loss 0.861 flops 11.517
ViT-B (MAE)
For the ViT-B (MAE)
model, we currently offer support for the --target_flops
option with {8.7,10.0,10.4,11.5}
. To illustrate, an example evaluating the ViT-B (MAE)
model with 11.5G
FLOPs would be:
python main.py --eval --load_compression_rate --data-path $path_to_imagenet$ --model vit_base_patch16_mae --target_flops 11.5
This should give:
Acc@1 82.864 Acc@5 96.148 loss 0.794 flops 11.517
ViT-L (MAE)
For the ViT-L (MAE)
model, we currently offer support for the --target_flops
option with {31.0,34.7,38.5,42.3,46.1}
. To illustrate, an example evaluating the ViT-L (MAE)
model with 42.3G
FLOPs would be:
python main.py --eval --load_compression_rate --data-path $path_to_imagenet$ --model vit_large_patch16_mae --target_flops 42.3
This should give:
Acc@1 85.658 Acc@5 97.442 loss 0.683 flops 42.290
ViT-H (MAE)
For the ViT-H (MAE)
model, we currently offer support for the --target_flops
option with {83.7,93.2,103.4,124.5}
. To illustrate, an example evaluating the ViT-H (MAE)
model with 103.4G
FLOPs would be:
python main.py --eval --load_compression_rate --data-path $path_to_imagenet$ --model vit_huge_patch14_mae --target_flops 103.4
This should give:
Acc@1 86.664 Acc@5 97.894 loss 0.602 flops 103.337
CAFormer-S36
For the CAFormer-S36
model, we currently offer support for the --target_flops
option with {5.2,5.6,6.0}
. To illustrate, an example evaluating the CAFormer-S36
model with 5.6
FLOPs would be:
python main.py --eval --load_compression_rate --data-path $path_to_imagenet$ --model caformer_s36 --target_flops 5.6
This should give:
Acc@1 83.910 Acc@5 96.710 loss 0.712 flops 5.604
To find the optimal compression rate by proposed DiffRate
, run the following code:
python -m torch.distributed.launch \
--nproc_per_node=4 --use_env \
--master_port 29513 main.py \
--arch-lr 0.01 --arch-min-lr 0.001 \
--epoch 3 --batch-size 256 \
--data-path $path_to_imagenet$ \
--output_dir $path_to_save_log$ \
--model $model_name$ \
--target_flops $target_flops$
- supported
$model_name$
:{vit_deit_tiny_patch16_224,vit_deit_small_patch16_224,vit_deit_base_patch16_224,vit_base_patch16_mae,vit_large_patch16_mae,vit_huge_patch14_mae,caformer_s36}
- supported
$target_flops$
: a floating point number
For example, search a 2.9G
compression rate schedule for ViT-S (DeiT)
:
python -m torch.distributed.launch \
--nproc_per_node=4 --use_env \
--master_port 29513 main.py \
--arch-lr 0.01 --arch-min-lr 0.001 \
--epoch 3 --batch-size 256 \
--data-path $path_to_imagenet$ \
--output_dir $path_to_save_log$ \
--model vit_deit_small_patch16_224 \
--target_flops 2.9
See visualization.ipynb for more details.
If you use DiffRate or this repository in your work, please cite:
@article{DiffRate,
title={DiffRate : Differentiable Compression Rate for Efficient Vision Transformers},
author={Mengzhao Chen, Wenqi Shao, Peng Xu, Mingbao Lin, Kaipeng Zhang, Fei Chao, Rongrong Ji, Yu Qiao, Ping Luo},
journal={arXiv preprint arXiv:2305.17997},
year={2023}
}
This codebase borrow some code from DeiT and ToMe. Thanks for their wonderful work.