-
Notifications
You must be signed in to change notification settings - Fork 735
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* init atanh * add atanh * add /n in the tail' * update atanh * format * add tan * add test_square.py test_sqrt.py * update test_atanh grad * update test_tensor.py * add doctest * update * split tensor * add 3 dim testcase * resolve conflict * auto format by CI * Update test_atanh.py use arg_dict[test_fun"] * Revert "Update test_atanh.py" This reverts commit d726d7b. * fix Co-authored-by: oneflow-ci-bot <[email protected]> Co-authored-by: oneflow-ci-bot <[email protected]> Co-authored-by: aajjjtntn <[email protected]> Co-authored-by: jackalcooper <[email protected]>
- Loading branch information
1 parent
22fbe76
commit 9583290
Showing
6 changed files
with
376 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
""" | ||
Copyright 2020 The OneFlow Authors. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
import oneflow as flow | ||
from oneflow.python.oneflow_export import oneflow_export, experimental_api | ||
from oneflow.python.nn.module import Module | ||
from oneflow.python.framework.tensor import register_tensor_op | ||
|
||
|
||
class Atanh(Module): | ||
def __init__(self): | ||
super().__init__() | ||
self._op = flow.builtin_op("atanh").Input("x").Output("y").Build() | ||
|
||
def forward(self, x): | ||
return self._op(x)[0] | ||
|
||
|
||
@oneflow_export("atanh") | ||
@experimental_api | ||
def atanh_op(input): | ||
r"""Returns a new tensor with the inverse hyperbolic tangent of the elements of :attr:`input`. | ||
.. math:: | ||
\text{out}_{i} = \tanh^{-1}(\text{input}_{i}) | ||
Args: | ||
input (Tensor): the input tensor. | ||
For example: | ||
.. code-block:: python | ||
>>> import oneflow.experimental as flow | ||
>>> import numpy as np | ||
>>> flow.enable_eager_execution() | ||
>>> np_arr = np.array([0.5, 0.6, 0.7]).astype(np.float32) | ||
>>> input = flow.Tensor(np_arr) | ||
>>> output = flow.atanh(input) | ||
>>> print(output.numpy()) | ||
[0.54930615 0.6931472 0.8673005 ] | ||
""" | ||
|
||
return Atanh()(input) | ||
|
||
|
||
@register_tensor_op("atanh") | ||
@experimental_api | ||
def atanh_op_tensor(x): | ||
r""" | ||
atanh() -> Tensor | ||
See :func:`oneflow.experimental.atanh` | ||
""" | ||
|
||
return Atanh()(x) | ||
|
||
|
||
@oneflow_export("arctanh") | ||
@experimental_api | ||
def arctanh_op(input): | ||
r""" | ||
Alias for :func:`oneflow.experimental.atanh` | ||
""" | ||
|
||
return Atanh()(input) | ||
|
||
|
||
@register_tensor_op("arctanh") | ||
@experimental_api | ||
def arctanh_op_tensor(input): | ||
r""" | ||
Alias for :func:`oneflow.experimental.atanh` | ||
""" | ||
|
||
return Atanh()(input) | ||
|
||
|
||
if __name__ == "__main__": | ||
import doctest | ||
|
||
doctest.testmod(raise_on_error=True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
""" | ||
Copyright 2020 The OneFlow Authors. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
import oneflow as flow | ||
from oneflow.python.oneflow_export import oneflow_export, experimental_api | ||
from oneflow.python.nn.module import Module | ||
from oneflow.python.framework.tensor import register_tensor_op | ||
|
||
|
||
class Tan(Module): | ||
def __init__(self): | ||
super().__init__() | ||
self._op = flow.builtin_op("tan").Input("x").Output("y").Build() | ||
|
||
def forward(self, x): | ||
return self._op(x)[0] | ||
|
||
|
||
@oneflow_export("tan") | ||
@experimental_api | ||
def tan_op(input): | ||
r"""Returns the tan value of the elements of :attr:`input`. | ||
.. math:: | ||
\text{out}_{i} = \tan(\text{input}_{i}) | ||
Args: | ||
input (Tensor): the input tensor. | ||
For example: | ||
.. code-block:: python | ||
>>> import oneflow.experimental as flow | ||
>>> import numpy as np | ||
>>> flow.enable_eager_execution() | ||
>>> np_arr = np.array([-1/4*np.pi, 0, 1/4*np.pi]).astype(np.float32) | ||
>>> input = flow.Tensor(np_arr) | ||
>>> output = flow.tan(input) | ||
>>> print(output.numpy()) | ||
[-1. 0. 1.] | ||
""" | ||
|
||
return Tan()(input) | ||
|
||
|
||
@register_tensor_op("tan") | ||
@experimental_api | ||
def tan_op_tensor(input): | ||
r""" | ||
tan() -> Tensor | ||
See :func:`oneflow.experimental.tan` | ||
""" | ||
|
||
return Tan()(input) | ||
|
||
|
||
if __name__ == "__main__": | ||
import doctest | ||
|
||
doctest.testmod(raise_on_error=True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,80 @@ | ||
""" | ||
Copyright 2020 The OneFlow Authors. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
import unittest | ||
from collections import OrderedDict | ||
|
||
import numpy as np | ||
|
||
import oneflow.experimental as flow | ||
from test_util import GenArgList | ||
|
||
|
||
def _test_atanh_impl(test_case, shape, device): | ||
np_input = np.random.random(shape) | ||
of_input = flow.Tensor( | ||
np_input, dtype=flow.float32, device=flow.device(device), requires_grad=True | ||
) | ||
|
||
of_out = flow.atanh(of_input) | ||
np_out = np.arctanh(np_input) | ||
test_case.assertTrue( | ||
np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4, equal_nan=True) | ||
) | ||
|
||
of_out = of_out.sum() | ||
of_out.backward() | ||
np_out_grad = 1.0 / (1.0 - np.square(np_input)) | ||
test_case.assertTrue( | ||
np.allclose(of_input.grad.numpy(), np_out_grad, 1e-4, 1e-4, equal_nan=True) | ||
) | ||
|
||
|
||
def _test_arctanh_impl(test_case, shape, device): | ||
np_input = np.random.random(shape) | ||
of_input = flow.Tensor( | ||
np_input, dtype=flow.float32, device=flow.device(device), requires_grad=True | ||
) | ||
|
||
of_out = flow.arctanh(of_input) | ||
np_out = np.arctanh(np_input) | ||
test_case.assertTrue( | ||
np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4, equal_nan=True) | ||
) | ||
|
||
of_out = of_out.sum() | ||
of_out.backward() | ||
np_out_grad = 1.0 / (1.0 - np.square(np_input)) | ||
test_case.assertTrue( | ||
np.allclose(of_input.grad.numpy(), np_out_grad, 1e-4, 1e-4, equal_nan=True) | ||
) | ||
|
||
|
||
@unittest.skipIf( | ||
not flow.unittest.env.eager_execution_enabled(), | ||
".numpy() doesn't work in lazy mode", | ||
) | ||
class TestAtanh(flow.unittest.TestCase): | ||
def test_atanh(test_case): | ||
arg_dict = OrderedDict() | ||
arg_dict["shape"] = [(2, 3), (2, 3, 4), (2, 4, 5, 6)] | ||
arg_dict["device"] = ["cpu", "cuda"] | ||
for arg in GenArgList(arg_dict): | ||
_test_atanh_impl(test_case, *arg) | ||
_test_arctanh_impl(test_case, *arg) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
""" | ||
Copyright 2020 The OneFlow Authors. All rights reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
""" | ||
import unittest | ||
from collections import OrderedDict | ||
|
||
import numpy as np | ||
|
||
import oneflow.experimental as flow | ||
from test_util import GenArgList | ||
|
||
|
||
def _test_tan_impl(test_case, shape, device): | ||
np_input = np.random.random(size=shape) | ||
of_input = flow.Tensor( | ||
np_input, dtype=flow.float32, device=flow.device(device), requires_grad=True | ||
) | ||
|
||
of_out = flow.tan(of_input) | ||
np_out = np.tan(np_input) | ||
test_case.assertTrue( | ||
np.allclose(of_out.numpy(), np_out, 1e-4, 1e-4, equal_nan=True) | ||
) | ||
|
||
of_out = of_out.sum() | ||
of_out.backward() | ||
np_out_grad = 1 + np.square(np_out) | ||
test_case.assertTrue( | ||
np.allclose(of_input.grad.numpy(), np_out_grad, 1e-4, 1e-4, equal_nan=True) | ||
) | ||
|
||
|
||
@unittest.skipIf( | ||
not flow.unittest.env.eager_execution_enabled(), | ||
".numpy() doesn't work in lazy mode", | ||
) | ||
class TestTan(flow.unittest.TestCase): | ||
def test_tan(test_case): | ||
arg_dict = OrderedDict() | ||
arg_dict["shape"] = [(2, 3), (2, 3, 4), (2, 4, 5, 6)] | ||
arg_dict["device"] = ["cpu", "cuda"] | ||
for arg in GenArgList(arg_dict): | ||
_test_tan_impl(test_case, *arg) | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters