This repository contains Python modules that provide an advanced Machine Learning intelligence layer for Hikari A.I. These modules leverage the latest developments in Natural Language Processing (NLP), neural memory systems, and real-time analytics to create a sophisticated, context-aware AI companion.
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ Hikari AI System โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ โโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ Sentiment โ โ Context โ โ Real-time โ โ
โ โ Analysis โ โ Memory โ โ Analytics โ โ
โ โ โ โ โ โ โ โ
โ โ โข BERT Models โ โ โข FAISS Vectors โ โ โข Prophet โ โ
โ โ โข Multi-model โ โ โข LMDB Storage โ โ โข PyTorch โ โ
โ โ โข Real-time โ โ โข Knowledge โ โ โข WebSocket โ โ
โ โ โ โ Graph โ โ โ โ
โ โโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ
โ โ โ
โ Rust Engine Integration โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
- Core Technologies
- Module Breakdown
- Installation
- Technical Deep Dive
- Performance Optimizations
- Why These Technologies?
- Usage Examples
- API Reference
- BERT (Bidirectional Encoder Representations from Transformers): Latest multilingual sentiment analysis
- DistilRoBERTa: Emotion detection with 7-class classification
- T5 (Text-to-Text Transfer Transformer): Neural summarization
- Sentence-BERT: Semantic similarity and embeddings
- FAISS (Facebook AI Similarity Search): Billion-scale vector similarity search
- LMDB (Lightning Memory-Mapped Database): Ultra-fast key-value storage
- Redis: Real-time caching and pub/sub messaging
- PyTorch: Custom LSTM + Attention networks
- Prophet: Facebook's time-series forecasting
- Isolation Forest: Anomaly detection
- DBSCAN: Density-based clustering
Purpose: Real-time emotional intelligence and sentiment understanding
Key Features:
- Multi-model Ensemble: Combines BERT, VADER, and emoji analysis for 360ยฐ sentiment understanding
- Emotion Detection: 7-class emotion classification (anger, disgust, fear, joy, neutral, sadness, surprise)
- Toxicity Detection: Protects Hikari from harmful content using toxic-bert
- Conversation Context: Tracks sentiment trends per user and globally
- Real-time Processing: Asynchronous queue-based architecture for <100ms response times
Technical Highlights:
# Weighted ensemble approach
aggregate_score = (
bert['score'] * 0.5 + # Deep contextual understanding
vader_normalized * 0.3 + # Rule-based sentiment
emoji['score'] * 0.2 # Emoji sentiment analysis
)
Purpose: Human-like memory with encoding, consolidation, and retrieval
Key Features:
- Three-tier Memory Architecture:
- Short-term memory (working buffer)
- Long-term memory (consolidated important memories)
- Episodic buffer (narrative memory)
- Semantic Knowledge Graph: NetworkX-based entity relationships
- Memory Consolidation: Mimics human memory with importance-based transfer
- Forgetting Curve: Implements Ebbinghaus forgetting curve for realistic memory decay
- Vector Similarity Search: FAISS-powered semantic memory retrieval
Technical Highlights:
# Memory decay implementation
decayed_importance = importance * (self.decay_rate ** age_days)
# FAISS indexing for similarity search
self.long_term_index = faiss.IndexIVFFlat(
faiss.IndexFlatL2(embedding_dim),
embedding_dim,
100 # Number of clusters
)
Purpose: Real-time viewer engagement prediction and content optimization
Key Features:
- Custom Neural Architecture: LSTM + Multi-head Attention for engagement prediction
- Time-series Forecasting: Prophet-based viewer count and chat rate predictions
- Anomaly Detection: Isolation Forest for unusual behavior detection
- WebSocket Server: Real-time dashboard updates
- Content Performance Tracking: A/B testing and performance analytics
Technical Highlights:
class ViewerEngagementPredictor(nn.Module):
def __init__(self):
self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers=2, dropout=0.2)
self.attention = nn.MultiheadAttention(hidden_dim, num_heads=8)
# Python 3.8+ required
python --version
# CUDA (optional but recommended for GPU acceleration)
nvidia-smi
torch>=1.9.0
transformers>=4.20.0
sentence-transformers>=2.2.0
faiss-gpu>=1.7.2 # or faiss-cpu
lmdb>=1.3.0
redis>=4.3.0
prophet>=1.1
scikit-learn>=1.0.0
spacy>=3.0.0
python -m spacy download en_core_web_sm
vaderSentiment>=3.3.2
emoji>=2.0.0
networkx>=2.8
plotly>=5.0.0
websockets>=10.0
aioredis>=2.0.0
msgpack>=1.0.0
BERT revolutionized NLP by introducing bidirectional context understanding. Unlike traditional models that read text sequentially, BERT processes entire sequences simultaneously, capturing nuanced relationships between words.
# BERT processes context bidirectionally
"I love this game" โ Positive (considering full context)
"I love this game... NOT!" โ Negative (understanding sarcasm through context)
Facebook AI Similarity Search (FAISS) enables searching through millions of vectors in milliseconds:
- Flat Index: Exact search for small datasets
- IVF (Inverted File) Index: Approximate search for large datasets
- GPU Acceleration: 10-100x speedup for similarity computations
Inspired by neuroscience, our memory system mimics human memory consolidation:
# Consolidation score calculation
consolidation_score = importance * 0.6 + np.tanh(access_count / 5) * 0.4
# Only important, frequently accessed memories move to long-term storage
if consolidation_score > threshold:
transfer_to_long_term(memory)
Message โ Queue โ Background Thread โ Feature Extraction โ
โ
โโโ Sentiment Analysis (BERT)
โโโ Emotion Detection (DistilRoBERTa)
โโโ Sarcasm Check (Toxic-BERT)
โโโ Context Update
โ
Response Recommendation โ Hikari Engine
- All models automatically use CUDA if available
- Batch processing for multiple messages
- Mixed precision training (FP16) support
- Redis for frequently accessed data
- LRU cache for embeddings
- Pre-computed features for common phrases
- Non-blocking I/O for all external calls
- Queue-based architecture prevents bottlenecks
- Background threads for heavy computations
- Circular buffers for streaming data
- Automatic memory cleanup
- Compression for long-term storage
- Context Understanding: BERT understands "bank" differently in "river bank" vs "money bank"
- Transfer Learning: Pre-trained on massive datasets, fine-tunable for specific tasks
- Multilingual Support: Can understand multiple languages without separate models
- Vector Search: Finds semantically similar content, not just keyword matches
- Scalability: Handles billions of vectors efficiently
- Approximate Search: Trades minimal accuracy for 100x speed improvement
- Automatic Seasonality: Detects daily, weekly, yearly patterns automatically
- Robust to Missing Data: Handles gaps in time series gracefully
- Intuitive Parameters: Easy to tune for domain experts
# Initialize the sentiment analyzer
analyzer = AdvancedSentimentAnalyzer()
# Analyze a message
result = await analyzer.analyze_message(
text="This stream is absolutely amazing! ๐ฅ",
username="viewer123",
context={"stream_game": "Minecraft"}
)
print(result['sentiment']['aggregate']) # {'score': 0.92, 'label': 'very_positive'}
print(result['emotion']['primary']) # 'joy'
print(result['response_recommendation']) # {'tone': 'enthusiastic', 'priority': 'high'}
# Initialize memory system
memory = NeuralMemorySystem()
# Store a memory
memory_id = await memory.store_memory(
content="Viewer asked about favorite anime",
memory_type="interaction",
metadata={"topic": "anime", "user": "otaku_fan"},
importance=0.8
)
# Retrieve related memories
memories = await memory.retrieve_memories(
query="What anime do you like?",
k=5,
memory_types=["interaction", "preference"]
)
# Initialize analytics engine
analytics = StreamAnalyticsEngine()
# Process chat message
insights = await analytics.process_chat_message(
username="active_viewer",
message="POG! This gameplay is insane!",
timestamp=datetime.now()
)
# Get viewer insights
profile = await analytics.get_viewer_insights("active_viewer")
print(profile['engagement_score']) # 0.85
print(profile['favorite_topics']) # [('gameplay', 0.9), ('pog', 0.7)]
# Forecast metrics
forecast = await analytics.forecast_metrics(
metric_name="viewer_count",
periods=24 # Next 24 hours
)
async def analyze_message(text: str, username: str, context: Dict) -> Dict[str, Any]
Analyzes sentiment, emotion, and toxicity of a message.
Returns:
sentiment
: Aggregate and individual model scoresemotion
: Primary emotion and confidence scorestoxicity
: Toxicity detection resultsresponse_recommendation
: Suggested response parameters
async def store_memory(content: str, memory_type: str, metadata: Dict, importance: float) -> str
Stores a memory with semantic encoding.
async def retrieve_memories(query: str, k: int, memory_types: List[str]) -> List[Dict]
Retrieves semantically similar memories.
async def process_chat_message(username: str, message: str, timestamp: datetime) -> Dict[str, Any]
Processes chat messages for real-time analytics.
async def forecast_metrics(metric_name: str, periods: int) -> Dict[str, Any]
Forecasts future metrics using Prophet.
- Multimodal Analysis: Integrate audio/video emotion detection
- Federated Learning: Privacy-preserving model updates
- Graph Neural Networks: Enhanced knowledge graph reasoning
- Transformer Memory: Attention-based memory mechanisms
- AutoML Integration: Automatic model selection and tuning
This project is licensed under the MIT License - see the LICENSE file for details.
- Hugging Face for transformer models
- Facebook AI for FAISS and Prophet
- The PyTorch team for the excellent deep learning framework
- The Python open-source community
Built with โค๏ธ for Hikari A.I.