-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Fixed indexing error in brains module Small indexing error when concatenating the electrode positions to plot them. * Update to color electrodes by R2 Added code to color electrodes by R2. * Simplify colors for grid location Realized I already had the color array I needed for grid location coloring. * Generalize coloring by any column in electrode table Switched out radio button for dropdown menu that automatically populates using all the column names in the electrodes table. Handles different data types and prints error message if column is selected that does not have a valid data type for coloring. * Dynamically show legend of color bar Show legend if visualizing a categorical value and color if visualizing a continuous variable. * Notebook for binder testing / edits during mtg w/ Ben * Setup postbuild for streaming nwb on binder * Revert "Setup postbuild for streaming nwb on binder" This reverts commit b3a80d0. * Generalize electrode coloring to include 'bytes' datatype * Fix widget control layout * Fix layout for dashboard Commented this line out because it was causing formatting issues in the Brunton dashboard * Decrease fig size for Brunton dashboard Decreasing electrical series trace fig size to fit in Brunton dashboard better * Make traces same color Update SeparateTraces widget to have same color across traces Co-authored-by: Michael Scheid <[email protected]> Co-authored-by: Ben Dichter <[email protected]>
- Loading branch information
1 parent
1ef766e
commit fdb9016
Showing
3 changed files
with
388 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,294 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [], | ||
"source": [ | ||
"cd C:\\Users\\micha\\Dropbox\\Catalyst Neuro\\repos\\nwb-jupyter-widgets" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from pynwb import NWBHDF5IO\n", | ||
"from nwbwidgets.brains import HumanElectrodesPlotlyWidget\n", | ||
"from nwbwidgets.utils.timeseries import get_timeseries_tt\n", | ||
"import numpy as np\n", | ||
"import pandas as pd\n", | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"from datetime import datetime\n", | ||
"from ndx_events import LabeledEvents, AnnotatedEventsTable, Events\n", | ||
"\n", | ||
"io = NWBHDF5IO(r'C:\\Users\\micha\\Desktop\\Brunton Lab Data\\H5\\subj_01_day_3.nwb', mode='r')\n", | ||
"nwb = io.read()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": { | ||
"scrolled": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "ffeb489c5533482aa5df02ba564f494e", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"HumanElectrodesPlotlyWidget(children=(FigureWidget({\n", | ||
" 'data': [{'color': 'lightgray',\n", | ||
" 'hoveri…" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"HumanElectrodesPlotlyWidget(nwb.electrodes)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": { | ||
"scrolled": false | ||
}, | ||
"outputs": [], | ||
"source": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"0 0\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"for i, n in enumerate([0]):\n", | ||
" print(i, n)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"a = np.array([x for x in range(3)])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([0, 1, 2])" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"a" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"b = np.array([1, 1, 1])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([0, 1, 2])" | ||
] | ||
}, | ||
"execution_count": 8, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"a[b == 1]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"['x',\n", | ||
" 'y',\n", | ||
" 'z',\n", | ||
" 'imp',\n", | ||
" 'location',\n", | ||
" 'filtering',\n", | ||
" 'group',\n", | ||
" 'group_name',\n", | ||
" 'standard_deviation',\n", | ||
" 'kurtosis',\n", | ||
" 'median_deviation',\n", | ||
" 'good',\n", | ||
" 'low_freq_R2',\n", | ||
" 'high_freq_R2']" | ||
] | ||
}, | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"list(nwb.electrodes.colnames)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": { | ||
"scrolled": false | ||
}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([ True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True, True, True, True, True, True,\n", | ||
" True, True, True, True])" | ||
] | ||
}, | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"nwb.electrodes['good'][:]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"numpy.bool_" | ||
] | ||
}, | ||
"execution_count": 11, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"type(nwb.electrodes['good'][0])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"True" | ||
] | ||
}, | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"isinstance(nwb.electrodes['x'][0], np.float)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"numpy.float64" | ||
] | ||
}, | ||
"execution_count": 13, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"type(nwb.electrodes['z'][0])" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.7.6" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 4 | ||
} |
Oops, something went wrong.