-
Notifications
You must be signed in to change notification settings - Fork 113
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Removing test data Update Readme to add instructions for downloading test_data Add gitattributes for test_data
- Loading branch information
1 parent
c9ca48e
commit f28013a
Showing
125 changed files
with
56,191 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,2 @@ | ||
|
||
test_data/** filter= diff= merge= -text | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,6 @@ | ||
results | ||
checkpoints/* | ||
*.npz | ||
**/*.pyc | ||
**/__pycache__ | ||
.vscode |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
# Contact-GraspNet | ||
|
||
### Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes | ||
Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter Fox | ||
ICRA 2021 | ||
|
||
[paper](https://arxiv.org/abs/2103.14127), [project page](https://research.nvidia.com/publication/2021-03_Contact-GraspNet%3A--Efficient), [video](http://www.youtube.com/watch?v=qRLKYSLXElM) | ||
|
||
<p align="center"> | ||
<img src="examples/2.gif" width="640" title="UOIS + Contact-GraspNet"/> | ||
</p> | ||
|
||
## Installation | ||
|
||
This code has been tested with python 3.7, tensorflow 2.2, CUDA 10.1, and CUDNN 7.6.0 | ||
|
||
Create the conda env | ||
``` | ||
conda env create -f contact_graspnet_env.yml | ||
``` | ||
|
||
### Troubleshooting | ||
|
||
- Recompile pointnet2 tf_ops, see [here](pointnet2/tf_ops/HowTO.md) | ||
|
||
### Hardware | ||
Training: 1x Nvidia GPU >= 24GB VRAM, >=64GB RAM | ||
Inference: 1x Nvidia GPU >= 8GB VRAM (might work with less) | ||
|
||
## Download Models and Data | ||
### Model | ||
Download trained models from [here](https://drive.google.com/drive/folders/1tBHKf60K8DLM5arm-Chyf7jxkzOr5zGl?usp=sharing) and copy them into the `checkpoints/` folder. | ||
### Test data | ||
Download the test data from [here](https://drive.google.com/drive/folders/1v0_QMTUIEOcu09Int5V6N2Nuq7UCtuAA?usp=sharing) and copy them them into the `test_data/` folder. | ||
|
||
## Inference | ||
|
||
|
||
Contact-GraspNet can directly predict a 6-DoF grasp distribution from a raw scene point cloud. However, to obtain object-wise grasps, remove background grasps and to achieve denser proposals it is highly recommended to use (unknown) object segmentation [e.g. [1](https://github.com/chrisdxie/uois), [2](https://arxiv.org/abs/2103.06796)] as preprocessing and then use the resulting segmentation map to crop local regions and filter grasp contacts. | ||
|
||
Given a .npy/.npz file with a depth map (in meters), camera matrix K and (optionally) a 2D segmentation map, execute: | ||
|
||
```shell | ||
python contact_graspnet/inference.py \ | ||
--np_path=test_data/*.npy \ | ||
--local_regions --filter_grasps | ||
``` | ||
|
||
<p align="center"> | ||
<img src="examples/7.png" width="640" title="UOIS + Contact-GraspNet"/> | ||
</p> | ||
--> close the window to go to next scene | ||
|
||
Given a .npy/.npz file with just a 3D point cloud (in meters), execute [for example](examples/realsense_crop_sigma_001.png): | ||
```shell | ||
python contact_graspnet/inference.py --np_path=/path/to/your/pc.npy \ | ||
--forward_passes=5 \ | ||
--z_range=[0.2,1.1] | ||
``` | ||
|
||
`--np_path`: input .npz/.npy file(s) with 'depth', 'K' and optionally 'segmap', 'rgb' keys. For processing a Nx3 point cloud instead use 'xzy' and optionally 'xyz_color' as keys. | ||
`--ckpt_dir`: relative path to checkpooint directory. By default `checkpoint/scene_test_2048_bs3_hor_sigma_001` is used. For very clean / noisy depth data consider `scene_2048_bs3_rad2_32` / `scene_test_2048_bs3_hor_sigma_0025` trained with no / strong noise. | ||
`--local_regions`: Crop 3D local regions around object segments for inference. (only works with segmap) | ||
`--filter_grasps`: Filter grasp contacts such that they only lie on the surface of object segments. (only works with segmap) | ||
`--skip_border_objects` Ignore segments touching the depth map boundary. | ||
`--forward_passes` number of (batched) forward passes. Increase to sample more potential grasp contacts. | ||
`--z_range` [min, max] z values in meter used to crop the input point cloud, e.g. to avoid grasps in the foreground/background(as above). | ||
`--arg_configs TEST.second_thres:0.19 TEST.first_thres:0.23` Overwrite config confidence thresholds for successful grasp contacts to get more/less grasp proposals | ||
|
||
|
||
## Training | ||
|
||
### Download Data | ||
|
||
Download the Acronym dataset, ShapeNet meshes and make them watertight, following these [steps](https://github.com/NVlabs/acronym#using-the-full-acronym-dataset). | ||
|
||
Download the training data consisting of 10000 table top training scenes with contact grasp information from [here](https://drive.google.com/drive/folders/1eeEXAISPaStZyjMX8BHR08cdQY4HF4s0?usp=sharing) and extract it to the same folder: | ||
|
||
``` | ||
acronym | ||
├── grasps | ||
├── meshes | ||
├── scene_contacts | ||
└── splits | ||
``` | ||
|
||
### Train Contact-GraspNet | ||
|
||
When training on a headless server set the environment variable | ||
```shell | ||
export PYOPENGL_PLATFORM='egl' | ||
``` | ||
|
||
Start training with config `contact_graspnet/config.yaml` | ||
``` | ||
python contact_graspnet/train.py --ckpt_dir checkpoints/your_model_name \ | ||
--data_path /path/to/acronym/data | ||
``` | ||
|
||
### Generate Contact Grasps and Scenes yourself (optional) | ||
|
||
The `scene_contacts` downloaded above are generated from the Acronym dataset. To generate/visualize table-top scenes yourself, also pip install the [acronym_tools]((https://github.com/NVlabs/acronym)) package in your conda environment as described in the acronym repository. | ||
|
||
In the first step, object-wise 6-DoF grasps are mapped to their contact points saved in `mesh_contacts` | ||
|
||
``` | ||
python tools/create_contact_infos.py /path/to/acronym | ||
``` | ||
|
||
From the generated `mesh_contacts` you can create table-top scenes which are saved in `scene_contacts` with | ||
|
||
``` | ||
python tools/create_table_top_scenes.py /path/to/acronym | ||
``` | ||
|
||
Takes ~3 days in a single thread. Run the command several times to process on multiple cores in parallel. | ||
|
||
You can also visualize existing table-top scenes and grasps | ||
|
||
``` | ||
python tools/create_table_top_scenes.py /path/to/acronym \ | ||
--load_existing scene_contacts/000000.npz -vis | ||
``` | ||
|
||
## Citation | ||
|
||
``` | ||
@article{sundermeyer2021contact, | ||
title={Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes}, | ||
author={Sundermeyer, Martin and Mousavian, Arsalan and Triebel, Rudolph and Fox, Dieter}, | ||
booktitle={2021 IEEE International Conference on Robotics and Automation (ICRA)}, | ||
year={2021} | ||
} | ||
``` |
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
DATA: | ||
scene_contacts_path: scene_contacts | ||
gripper_width: 0.08 | ||
input_normals: false | ||
use_uniform_quaternions: False | ||
view_sphere: | ||
elevation: [30,150] | ||
distance_range: [0.9,1.3] | ||
train_on_scenes: True | ||
labels: | ||
to_gpu: False | ||
bin_weights: | ||
- 0.16652107 | ||
- 0.21488856 | ||
- 0.37031708 | ||
- 0.55618503 | ||
- 0.75124664 | ||
- 0.93943357 | ||
- 1.07824539 | ||
- 1.19423112 | ||
- 1.55731375 | ||
- 3.17161779 | ||
filter_z: true | ||
k: 1 | ||
max_radius: 0.005 | ||
num_neg_contacts: 0 | ||
num_pos_contacts: 8000 | ||
offset_bins: | ||
- 0 | ||
- 0.00794435329 | ||
- 0.0158887021 | ||
- 0.0238330509 | ||
- 0.0317773996 | ||
- 0.0397217484 | ||
- 0.0476660972 | ||
- 0.055610446 | ||
- 0.0635547948 | ||
- 0.0714991435 | ||
- 0.08 | ||
z_val: -0.1 | ||
pc_augm: | ||
occlusion_nclusters: 0 | ||
occlusion_dropout_rate: 0.0 | ||
sigma: 0.000 | ||
clip: 0.005 | ||
depth_augm: | ||
sigma: 0.001 | ||
clip: 0.005 | ||
gaussian_kernel: 0 | ||
raw_num_points: 20000 | ||
ndataset_points: 20000 | ||
num_point: 2048 | ||
use_farthest_point: false | ||
train_and_test: false | ||
num_test_scenes: 1000 | ||
intrinsics: 'realsense' | ||
LOSS: | ||
min_geom_loss_divisor: 1.0 | ||
offset_loss_type: sigmoid_cross_entropy | ||
too_small_offset_pred_bin_factor: 0 | ||
topk_confidence: 512 | ||
MODEL: | ||
bin_offsets: true | ||
dir_vec_length_offset: false | ||
grasp_conf_head: | ||
conv1d: 1 | ||
dropout_keep: 0.5 | ||
grasp_dir_head: | ||
conv1d: 3 | ||
dropout_keep: 0.7 | ||
joint_head: | ||
conv1d: 4 | ||
dropout_keep: 0.7 | ||
joint_heads: false | ||
asymmetric_model: true | ||
model: contact_graspnet | ||
pointnet_fp_modules: | ||
- mlp: | ||
- 256 | ||
- 256 | ||
- mlp: | ||
- 256 | ||
- 128 | ||
- mlp: | ||
- 128 | ||
- 128 | ||
- 128 | ||
pointnet_sa_module: | ||
group_all: true | ||
mlp: | ||
- 256 | ||
- 512 | ||
- 1024 | ||
pointnet_sa_modules_msg: | ||
- mlp_list: | ||
- - 32 | ||
- 32 | ||
- 64 | ||
- - 64 | ||
- 64 | ||
- 128 | ||
- - 64 | ||
- 96 | ||
- 128 | ||
npoint: 2048 | ||
nsample_list: | ||
- 32 | ||
- 64 | ||
- 128 | ||
radius_list: | ||
- 0.02 | ||
- 0.04 | ||
- 0.08 | ||
- mlp_list: | ||
- - 64 | ||
- 64 | ||
- 128 | ||
- - 128 | ||
- 128 | ||
- 256 | ||
- - 128 | ||
- 128 | ||
- 256 | ||
npoint: 512 | ||
nsample_list: | ||
- 64 | ||
- 64 | ||
- 128 | ||
radius_list: | ||
- 0.04 | ||
- 0.08 | ||
- 0.16 | ||
- mlp_list: | ||
- - 64 | ||
- 64 | ||
- 128 | ||
- - 128 | ||
- 128 | ||
- 256 | ||
- - 128 | ||
- 128 | ||
- 256 | ||
npoint: 128 | ||
nsample_list: | ||
- 64 | ||
- 64 | ||
- 128 | ||
radius_list: | ||
- 0.08 | ||
- 0.16 | ||
- 0.32 | ||
pred_contact_approach: false | ||
pred_contact_base: false | ||
pred_contact_offset: true | ||
pred_contact_success: true | ||
pred_grasps_adds: true | ||
pred_grasps_adds_gt2pred: false | ||
OPTIMIZER: | ||
max_epoch: 16 | ||
batch_size: 3 | ||
learning_rate: 0.001 | ||
optimizer: adam | ||
momentum: 0.9 | ||
adds_gt2pred_loss_weight: 1 | ||
adds_loss_weight: 10 | ||
approach_cosine_loss_weight: 1 | ||
dir_cosine_loss_weight: 1 | ||
offset_loss_weight: 1 | ||
score_ce_loss_weight: 1 | ||
bn_decay_clip: 0.99 | ||
bn_decay_decay_rate: 0.5 | ||
bn_decay_decay_step: 200000 | ||
bn_init_decay: 0.5 | ||
decay_rate: 0.7 | ||
decay_step: 200000 | ||
TEST: | ||
first_thres: 0.23 | ||
second_thres: 0.19 | ||
allow_zero_margin: 0 | ||
bin_vals: max | ||
center_to_tip: 0.0 | ||
extra_opening: 0.005 | ||
max_farthest_points: 150 | ||
num_samples: 200 | ||
with_replacement: false | ||
filter_thres: 0.0001 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
import os | ||
import yaml | ||
|
||
def recursive_key_value_assign(d,ks,v): | ||
""" | ||
Recursive value assignment to a nested dict | ||
Arguments: | ||
d {dict} -- dict | ||
ks {list} -- list of hierarchical keys | ||
v {value} -- value to assign | ||
""" | ||
|
||
if len(ks) > 1: | ||
recursive_key_value_assign(d[ks[0]],ks[1:],v) | ||
elif len(ks) == 1: | ||
d[ks[0]] = v | ||
|
||
def load_config(checkpoint_dir, batch_size=None, max_epoch=None, data_path=None, arg_configs=[], save=False): | ||
""" | ||
Loads yaml config file and overwrites parameters with function arguments and --arg_config parameters | ||
Arguments: | ||
checkpoint_dir {str} -- Checkpoint directory where config file was copied to | ||
Keyword Arguments: | ||
batch_size {int} -- [description] (default: {None}) | ||
max_epoch {int} -- "epochs" (number of scenes) to train (default: {None}) | ||
data_path {str} -- path to scenes with contact grasp data (default: {None}) | ||
arg_configs {list} -- Overwrite config parameters by hierarchical command line arguments (default: {[]}) | ||
save {bool} -- Save overwritten config file (default: {False}) | ||
Returns: | ||
[dict] -- Config | ||
""" | ||
|
||
config_path = os.path.join(checkpoint_dir, 'config.yaml') | ||
config_path = config_path if os.path.exists(config_path) else os.path.join(os.path.dirname(__file__),'config.yaml') | ||
with open(config_path,'r') as f: | ||
global_config = yaml.load(f) | ||
|
||
for conf in arg_configs: | ||
k_str, v = conf.split(':') | ||
try: | ||
v = eval(v) | ||
except: | ||
pass | ||
ks = [int(k) if k.isdigit() else k for k in k_str.split('.')] | ||
|
||
recursive_key_value_assign(global_config, ks, v) | ||
|
||
if batch_size is not None: | ||
global_config['OPTIMIZER']['batch_size'] = int(batch_size) | ||
if max_epoch is not None: | ||
global_config['OPTIMIZER']['max_epoch'] = int(max_epoch) | ||
if data_path is not None: | ||
global_config['DATA']['data_path'] = data_path | ||
|
||
global_config['DATA']['classes'] = None | ||
|
||
if save: | ||
with open(os.path.join(checkpoint_dir, 'config.yaml'),'w') as f: | ||
yaml.dump(global_config, f) | ||
|
||
return global_config | ||
|
Oops, something went wrong.