Skip to content

Commit

Permalink
Update changelog for 1.6
Browse files Browse the repository at this point in the history
  • Loading branch information
shi-eric committed Jan 22, 2025
1 parent 5def824 commit 464a6d5
Show file tree
Hide file tree
Showing 7 changed files with 106 additions and 76 deletions.
120 changes: 71 additions & 49 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,70 +4,94 @@

### Added

- `warp.autograd.gradcheck`, `function_jacobian`, `function_jacobian_fd` now also accept arbitrary Python functions that have Warp arrays as inputs and outputs.
- `warp.autograd.gradcheck_tape` now has additional optional arguments `reverse_launches` and `skip_to_launch_index`.
- Added preview of Tile Cholesky factorization and solve APIs through `tile_cholesky` and `tile_cholesky_solve` and the `tile_add_diag` helper function. Those are preview APIs and subject to change.
- Added preview of Tile Cholesky factorization and solve APIs through `tile_cholesky` and `tile_cholesky_solve`, as well as helpers `tile_tril` and `tile_add_diag`. Those are preview APIs and subject to change.
### Changed

### Fixed

## [1.6.0] - 2025-02-03

### Added

- Add preview of Tile Cholesky factorization and solve APIs through `wp.tile_cholesky()`, `tile_cholesky_solve()`
and `tile_diag_add()` (preview APIs are subject to change).
- Support for loading tiles from arrays whose shapes are not multiples of the tile dimensions.
Out-of-bounds reads will be zero-filled and out-of-bounds writes will be skipped.
- Support for higher-dimensional (up to 4D) tile shapes and memory operations
- Add intersection-free self-contact support in `wp.sim.VDBIntegrator` by passing `handle_self_contact=True`.
See `warp/examples/sim/example_cloth_self_contact.py` for a usage example.
- Add functions `wp.norm_l1()`, `wp.norm_l2()`, `wp.norm_huber()`, `wp.norm_pseudo_huber()`, and `wp.smooth_normalize()`
for vector types to a new `wp.math` module.
- `wp.sim.SemiImplicitIntegrator` and `wp.sim.FeatherstoneIntegrator` now have an optional `friction_smoothing`
constructor argument (defaults to 1.0) that controls softness of the friction norm computation.
- Support `assert` statements in kernels ([docs](https://nvidia.github.io/warp/debugging.html#assertions)).
Assertions can only be triggered in `"debug"` mode ([GH-366](https://github.com/NVIDIA/warp/issues/336)).
- Add optimization example for soft-body properties ([GH-419](https://github.com/NVIDIA/warp/pull/419)).
- CUDA IPC support on Linux. Call the `ipc_handle()` method get an IPC handle for a `wp.Event` or a `wp.array`,
- Support CUDA IPC on Linux. Call the `ipc_handle()` method to get an IPC handle for a `wp.Event` or a `wp.array`,
and call `wp.from_ipc_handle()` or `wp.event_from_ipc_handle()` in another process to open the handle
([docs](https://nvidia.github.io/warp/modules/runtime.html#interprocess-communication-ipc)).
- Add per-module option to disable fused floating point operations, use `wp.set_module_options({"fuse_fp": False})`
([GH-379](https://github.com/NVIDIA/warp/issues/379)).
- Add per-module option to add CUDA-C line information for profiling, use `wp.set_module_options({"lineinfo": True})`.
- Add support for wp.tile_load() where the source array shape is not a multiple of the tile dimension, out of bounds reads will be zero-filled
- Add support for higher dimensional (up to 4d) tile shapes and memory operations
- Add `example_tile_walker.py`, which reworks the existing `walker.py` to use Warp's tile API for matrix multiplication.
- Add functions `norm_l1`, `norm_l2`, `norm_huber`, `norm_pseudo_huber`, `smooth_normalize` for vector types to a new `math.py` module.
- `SemiImplicitIntegrator` and `FeatherstoneIntegrator` now have an optional `friction_smoothing` constructor argument (defaults to 1.0) that controls softness of the friction norm computation.
- Add operator overloads for `wp.struct` objects by defining `wp.func` functions ([GH-392](https://github.com/NVIDIA/warp/issues/392)).
- Add `example_tile_nbody.py`, an N-Body gravitational simulation example using Warp tile primitives.
- Add a `len()` built-in to retrieve the number of elements for vec/quat/mat/arrays ([GH-389](https://github.com/NVIDIA/warp/issues/389)).
- Support operator overloading for `wp.struct` objects by defining `wp.func` functions
([GH-392](https://github.com/NVIDIA/warp/issues/392)).
- Add built-in function `wp.len()` to retrieve the number of elements for vectors, quaternions, matrices, and arrays
([GH-389](https://github.com/NVIDIA/warp/issues/389)).
- Add `warp/examples/optim/example_softbody_properties.py` as an optimization example for soft-body properties
([GH-419](https://github.com/NVIDIA/warp/pull/419)).
- Add `warp/examples/tile/example_tile_walker.py`, which reworks the existing `example_walker.py`
to use Warp's tile API for matrix multiplication.
- Add `warp/examples/tile/example_tile_nbody.py` as an example of an N-body simulation using Warp tile primitives.

### Changed

- Files in the kernel cache will be named according to their directory. Previously, all files began with
- **Breaking:** Change `wp.tile_load()` and `wp.tile_store()` indexing behavior so that indices are now specified in
terms of *array elements* instead of *tile multiples*.
- **Breaking:** Tile operations now take `shape` and `offset` parameters as tuples,
e.g.: `wp.tile_load(array, shape=(m,n), offset=(i,j))`
- **Breaking:** Change exception types and error messages thrown by tile functions for improved consistency.
- Add an implicit tile synchronization whenever a shared memory tile's data is reinitialized (e.g. in dynamic loops).
This could result in lower performance.
- `wp.Bvh` constructor now supports various construction algorithms via the `constructor` argument, including
`"sah"` (Surface Area Heuristics), `"median"`, and `"lbvh"` ([docs](https://nvidia.github.io/warp/modules/runtime.html#warp.Bvh.__init__))
- Improve the query efficiency of `wp.Bvh` and `wp.Mesh`.
- Improve memory consumption, compilation and runtime performance when using in-place vector/matrix assignments in
kernels that have `enable_backward` set to `False` ([GH-332](https://github.com/NVIDIA/warp/issues/332)).
- Vector/matrix/quaternion component `+=` and `-=` operations compile and run faster in the backward pass
([GH-332](https://github.com/NVIDIA/warp/issues/332)).
- Emit deprecation warnings for the use of the `owner` and `length` keywords in the `wp.array` initializer.
- Name files in the kernel cache according to their directory. Previously, all files began with
`module_codegen` ([GH-431](https://github.com/NVIDIA/warp/issues/431)).
- Emit deprecation warnings for the use of the `owner` and `length` keywords in
the `wp.array` initializer.
- Improved the query efficiency of `wp.Bvh` and `wp.Mesh`.
- `wp.Bvh` constructor now supports multiple construction methods, including `SAH` ( Surface Area Heuristics), `Median` and `LBVH`.
- Avoid recompilation of modules when changing `block_dim`.
- Improve memory consumption, compilation and runtime performance when using in-place vector/matrix assignments in kernels that have `enable_backward` set to False ([GH-332](https://github.com/NVIDIA/warp/issues/332)).
- `update_vbo_transforms` kernel launches in OpenGLRenderer are no longer recorded on the tape.
- Fix the `len()` operator returning the total size of a matrix instead of its first dimension.
- Change exception types and error messages thrown by tile functions for improved consistency.
- Vector/Matrix/Quaternion component `+=` and `-=` operations compile and run faster in the backward pass.
- `wp.autograd.gradcheck_tape()` now has additional optional arguments `reverse_launches` and `skip_to_launch_index`.
- `wp.autograd.gradcheck()`, `wp.autograd.jacobian()`, and `wp.autograd.jacobian_fd()` now also accept
arbitrary Python functions that have Warp arrays as inputs and outputs.
- `update_vbo_transforms` kernel launches in the OpenGL renderer are no longer recorded onto the tape.

### Fixed

- Fix gradient instability in rigid-body contact handling for `SemiImplicitIntegrator`, `FeatherstoneIntegrator` ([GH-349](https://github.com/NVIDIA/warp/issues/349)).
- Fix overload resolution of generic Warp functions with default arguments.
- Fix autodiff Jacobian computation in `warp.autograd.jacobian_ad` where in some cases gradients were not zero-ed out properly.
- Fix plotting issues in `warp.autograd.jacobian_plot`.
- Fix unintended modification of non-Warp arrays during the backward pass ([GH-394](https://github.com/NVIDIA/warp/issues/394)).
- Fix so that `wp.Tape.zero()` zeroes gradients passed via the `grads` parameter in `wp.Tape.backward()`
([GH-407](https://github.com/NVIDIA/warp/issues/407)).
- Fix errors during graph capture caused by module unloading ([GH-401](https://github.com/NVIDIA/warp/issues/401)).
- Fix allocating arrays with strides ([GH-404](https://github.com/NVIDIA/warp/issues/404)).
- Fix `ImportError` exception being thrown during `OpenGLRenderer` interpreter shutdown on Windows
- Fix potential memory corruption errors when allocating arrays with strides ([GH-404](https://github.com/NVIDIA/warp/issues/404)).
- Fix `wp.array()` not respecting the target `dtype` and `shape` when the given data is an another array with a CUDA interface
([GH-363](https://github.com/NVIDIA/warp/issues/363)).
- Negative constants evaluate to compile-time constants ([GH-403](https://github.com/NVIDIA/warp/issues/403))
- Fix `ImportError` exception being thrown during interpreter shutdown on Windows when using the OpenGL renderer
([GH-412](https://github.com/NVIDIA/warp/issues/412)).
- Fix scale and rotation issues with the rock geometry used in the granular collision SDF example
([GH-409](https://github.com/NVIDIA/warp/issues/409)).
- Fix unintended modification of non-Warp arrays during the backward pass ([GH-394](https://github.com/NVIDIA/warp/issues/394)).
- Fix so that `wp.Tape.zero()` zeroes gradients passed via the 'grads' parameter in `wp.Tape.backward()` ([GH-407](https://github.com/NVIDIA/warp/issues/407)).
- Fix the OpenGL renderer not working when multiple instances exist at the same time ([GH-385](https://github.com/NVIDIA/warp/issues/385)).
- Negative constants evaluate to compile-time constants (fixes [GH-403](https://github.com/NVIDIA/warp/issues/403))
- Fix `AttributeError` crash in the OpenGL renderer when moving the camera ([GH-426](https://github.com/NVIDIA/warp/issues/426)).
- Fix `tile_register_t` `extract()` and `valid()` methods.
- Fix the OpenGL renderer now correctly displaying duplicate capsule, cone, and cylinder shapes ([GH-388](https://github.com/NVIDIA/warp/issues/388)).
- Fix the overriding of `wp.sim.Model` default parameters ([GH-429](https://github.com/NVIDIA/warp/pull/429)).
- Fix `wp.array()` not respecting the desired `dtype` and `shape` when the given data is an another array with a CUDA interface ([GH-363](https://github.com/NVIDIA/warp/issues/363)).
- Add an implicit tile sychronization whenever a shared memory tile's data is reinitialized (e.g. in dynamic loops). This could result in lower performance.

### Breaking

- Change indexing behavior in `wp.tile_load()`, `wp.tile_store()`, so that indices are now specified in terms of array elements instead of tile multiples.
- Tile operations now take `shape` and `offset` parameters as tuples, e.g.: `wp.tile_load(array, shape=(m,n), offset=(i,j))`
- Fix the OpenGL renderer not correctly displaying duplicate capsule, cone, and cylinder shapes
([GH-388](https://github.com/NVIDIA/warp/issues/388)).
- Fix the overriding of `wp.sim.ModelBuilder` default parameters ([GH-429](https://github.com/NVIDIA/warp/pull/429)).
- Fix indexing of `wp.tile_extract()` when the block dimension is smaller than the tile size.
- Fix scale and rotation issues with the rock geometry used in the granular collision SDF example
([GH-409](https://github.com/NVIDIA/warp/issues/409)).
- Fix autodiff Jacobian computation in `wp.autograd.jacobian()` where in some cases gradients were not zeroed-out properly.
- Fix plotting issues in `wp.autograd.jacobian_plot()`.
- Fix the `len()` operator returning the total size of a matrix instead of its first dimension.
- Fix gradient instability in rigid-body contact handling for `wp.sim.SemiImplicitIntegrator` and
`wp.sim.FeatherstoneIntegrator` ([GH-349](https://github.com/NVIDIA/warp/issues/349)).
- Fix overload resolution of generic Warp functions with default arguments.

## [1.5.1] - 2025-01-02

Expand All @@ -87,9 +111,6 @@
([GH-386](https://github.com/NVIDIA/warp/issues/386)).
- Array overwrite tracking: Fix issue with not marking arrays passed to `wp.atomic_add()`, `wp.atomic_sub()`,
`wp.atomic_max()`, or `wp.atomic_min()` as being written to ([GH-378](https://github.com/NVIDIA/warp/issues/378)).
- Fix for occasional failure to update .meta files into Warp kernel cache on Windows
- Mark kernel arrays as written to when passed to `wp.atomic_add()` or `wp.atomic_sub()`
- Fix the OpenGL renderer not being able to run without CUDA ([GH-344](https://github.com/NVIDIA/warp/issues/344)).
- Fix for occasional failure to update `.meta` files into Warp kernel cache on Windows.
- Fix the OpenGL renderer not being able to run without a CUDA device available
([GH-344](https://github.com/NVIDIA/warp/issues/344)).
Expand Down Expand Up @@ -1315,7 +1336,8 @@

- Initial publish for alpha testing

[Unreleased]: https://github.com/NVIDIA/warp/compare/v1.5.1...HEAD
[Unreleased]: https://github.com/NVIDIA/warp/compare/v1.6.0...HEAD
[1.6.0]: https://github.com/NVIDIA/warp/releases/tag/v1.6.0
[1.5.1]: https://github.com/NVIDIA/warp/releases/tag/v1.5.1
[1.5.0]: https://github.com/NVIDIA/warp/releases/tag/v1.5.0
[1.4.2]: https://github.com/NVIDIA/warp/releases/tag/v1.4.2
Expand Down
2 changes: 1 addition & 1 deletion VERSION.md
Original file line number Diff line number Diff line change
@@ -1 +1 @@
1.5.1
1.6.0
6 changes: 3 additions & 3 deletions docs/installation.rst
Original file line number Diff line number Diff line change
Expand Up @@ -25,11 +25,11 @@ the ``pip install`` command, e.g.
* - Platform
- Install Command
* - Linux aarch64
- ``pip install https://github.com/NVIDIA/warp/releases/download/v1.5.1/warp_lang-1.5.1+cu11-py3-none-manylinux2014_aarch64.whl``
- ``pip install https://github.com/NVIDIA/warp/releases/download/v1.6.0/warp_lang-1.6.0+cu11-py3-none-manylinux2014_aarch64.whl``
* - Linux x86-64
- ``pip install https://github.com/NVIDIA/warp/releases/download/v1.5.1/warp_lang-1.5.1+cu11-py3-none-manylinux2014_x86_64.whl``
- ``pip install https://github.com/NVIDIA/warp/releases/download/v1.6.0/warp_lang-1.6.0+cu11-py3-none-manylinux2014_x86_64.whl``
* - Windows x86-64
- ``pip install https://github.com/NVIDIA/warp/releases/download/v1.5.1/warp_lang-1.5.1+cu11-py3-none-win_amd64.whl``
- ``pip install https://github.com/NVIDIA/warp/releases/download/v1.6.0/warp_lang-1.6.0+cu11-py3-none-win_amd64.whl``

The ``--force-reinstall`` option may need to be used to overwrite a previous installation.

Expand Down
2 changes: 1 addition & 1 deletion exts/omni.warp.core/config/extension.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[package]
# Semantic Versioning is used: https://semver.org/
version = "1.5.1"
version = "1.6.0"
authors = ["NVIDIA"]
title = "Warp Core"
description="The core Warp Python module"
Expand Down
4 changes: 2 additions & 2 deletions exts/omni.warp/config/extension.toml
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
[package]
# Semantic Versioning is used: https://semver.org/
version = "1.5.1"
version = "1.6.0"
authors = ["NVIDIA"]
title = "Warp"
description="Warp OmniGraph Nodes and Sample Scenes"
Expand Down Expand Up @@ -36,7 +36,7 @@ exclude = ["Ogn*Database.py", "*/ogn*"]
"omni.timeline" = {}
"omni.ui" = {optional = true}
"omni.usd" = {}
"omni.warp.core" = {version = "1.5.1", exact = true}
"omni.warp.core" = {version = "1.6.0", exact = true}
"usdrt.scenegraph" = {}

[settings]
Expand Down
2 changes: 1 addition & 1 deletion warp/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@

from typing import Optional

version: str = "1.5.1"
version: str = "1.6.0"
"""Warp version string"""

verify_fp: bool = False
Expand Down
46 changes: 27 additions & 19 deletions warp/tests/test_sim_grad_bounce_linear.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
# Copyright (c) 2025 NVIDIA CORPORATION. All rights reserved.
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

import numpy as np

import warp as wp
Expand Down Expand Up @@ -164,31 +171,32 @@ def evaluate(self, num_samples, plot_results=False):


def test_sim_grad_bounce_linear(test, device):
model = BallBounceLinearTest()
model.generate_target_trajectory()

num_samples = 20
losses, grads = model.evaluate(num_samples=num_samples)
# gradients must approximate linear behavior with zero crossing in the middle
test.assertTrue(np.abs(grads[1:] - grads[:-1]).max() < 1.1)
test.assertTrue(np.all(grads[: num_samples // 2] <= 0.0))
test.assertTrue(np.all(grads[num_samples // 2 :] >= 0.0))
# losses must follow a parabolic behavior
test.assertTrue(np.allclose(losses[: num_samples // 2], losses[num_samples // 2 :][::-1], atol=1.0))
diffs = losses[1:] - losses[:-1]
test.assertTrue(np.all(diffs[: num_samples // 2 - 1] <= 0.0))
test.assertTrue(np.all(diffs[num_samples // 2 - 1 :] >= 0.0))
# second derivative must be constant positive
diffs2 = diffs[1:] - diffs[:-1]
test.assertTrue(np.allclose(diffs2, diffs2[0], atol=1e-2))
test.assertTrue(np.all(diffs2 >= 0.0))
with wp.ScopedDevice(device):
model = BallBounceLinearTest()
model.generate_target_trajectory()

num_samples = 20
losses, grads = model.evaluate(num_samples=num_samples)
# gradients must approximate linear behavior with zero crossing in the middle
test.assertTrue(np.abs(grads[1:] - grads[:-1]).max() < 1.1)
test.assertTrue(np.all(grads[: num_samples // 2] <= 0.0))
test.assertTrue(np.all(grads[num_samples // 2 :] >= 0.0))
# losses must follow a parabolic behavior
test.assertTrue(np.allclose(losses[: num_samples // 2], losses[num_samples // 2 :][::-1], atol=1.0))
diffs = losses[1:] - losses[:-1]
test.assertTrue(np.all(diffs[: num_samples // 2 - 1] <= 0.0))
test.assertTrue(np.all(diffs[num_samples // 2 - 1 :] >= 0.0))
# second derivative must be constant positive
diffs2 = diffs[1:] - diffs[:-1]
test.assertTrue(np.allclose(diffs2, diffs2[0], atol=1e-2))
test.assertTrue(np.all(diffs2 >= 0.0))


class TestSimGradBounceLinear(unittest.TestCase):
pass


devices = get_test_devices()
devices = get_test_devices("basic")
add_function_test(TestSimGradBounceLinear, "test_sim_grad_bounce_linear", test_sim_grad_bounce_linear, devices=devices)

if __name__ == "__main__":
Expand Down

0 comments on commit 464a6d5

Please sign in to comment.