Skip to content

NREL/K_Road

Repository files navigation

K_Road

A 2-D vehicle simulator for autonomous vehicle research.

pip install -r requirements.txt

Directory Structure:

  • command_line_tools/ -- a library for parsing JSON-like configs from the command line
  • coordinated_optimizer/ -- a library of distributed direct policy search methods
  • data_logging/ -- a library for logging experimental data
  • factored_gym/ -- a library for implementing AI gyms as separate components (process, reward function, observation function, terminator, etc)
  • hpc/ -- scripts and utilities for running K_Road on HPC systems
  • k_road/ -- the K_Road simulator
  • scenario/ -- example scenarios for K_Road
  • trainer/ -- Various RL algorithm implementations for use with RLLib and KRoad

Setting up an environment

# create env
conda create --name k_road

# install dependencies
conda install numpy scipy
pip install pygame pymunk

# Optional: 
conda install nb_conda_kernels

# with GPU:
# first, install CUDA drivers: http://www.nvidia.com/getcuda
sudo nvidia-xconfig
# then reboot
glxinfo

conda install tensorflow-gpu

# without GPU:
conda install tensorflow

pip install stable_baselines
 

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published