-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
43f466b
commit af66f83
Showing
3 changed files
with
439 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
from models.gcl import E_GCL, unsorted_segment_sum | ||
import torch | ||
from torch import nn | ||
|
||
|
||
class E_GCL_mask(E_GCL): | ||
"""Graph Neural Net with global state and fixed number of nodes per graph. | ||
Args: | ||
hidden_dim: Number of hidden units. | ||
num_nodes: Maximum number of nodes (for self-attentive pooling). | ||
global_agg: Global aggregation function ('attn' or 'sum'). | ||
temp: Softmax temperature. | ||
""" | ||
|
||
def __init__(self, input_nf, output_nf, hidden_nf, edges_in_d=0, nodes_attr_dim=0, act_fn=nn.ReLU(), recurrent=True, coords_weight=1.0, attention=False): | ||
E_GCL.__init__(self, input_nf, output_nf, hidden_nf, edges_in_d=edges_in_d, nodes_att_dim=nodes_attr_dim, act_fn=act_fn, recurrent=recurrent, coords_weight=coords_weight, attention=attention) | ||
|
||
del self.coord_mlp | ||
self.act_fn = act_fn | ||
|
||
def coord_model(self, coord, edge_index, coord_diff, edge_feat, edge_mask): | ||
row, col = edge_index | ||
trans = coord_diff * self.coord_mlp(edge_feat) * edge_mask | ||
agg = unsorted_segment_sum(trans, row, num_segments=coord.size(0)) | ||
coord += agg*self.coords_weight | ||
return coord | ||
|
||
def forward(self, h, edge_index, coord, node_mask, edge_mask, edge_attr=None, node_attr=None, n_nodes=None): | ||
row, col = edge_index | ||
radial, coord_diff = self.coord2radial(edge_index, coord) | ||
|
||
edge_feat = self.edge_model(h[row], h[col], radial, edge_attr) | ||
|
||
edge_feat = edge_feat * edge_mask | ||
|
||
# TO DO: edge_feat = edge_feat * edge_mask | ||
|
||
#coord = self.coord_model(coord, edge_index, coord_diff, edge_feat, edge_mask) | ||
h, agg = self.node_model(h, edge_index, edge_feat, node_attr) | ||
|
||
return h, coord, edge_attr | ||
|
||
|
||
|
||
class EGNN(nn.Module): | ||
def __init__(self, in_node_nf, in_edge_nf, hidden_nf, device='cpu', act_fn=nn.SiLU(), n_layers=4, coords_weight=1.0, attention=False, node_attr=1): | ||
super(EGNN, self).__init__() | ||
self.hidden_nf = hidden_nf | ||
self.device = device | ||
self.n_layers = n_layers | ||
|
||
### Encoder | ||
self.embedding = nn.Linear(in_node_nf, hidden_nf) | ||
self.node_attr = node_attr | ||
if node_attr: | ||
n_node_attr = in_node_nf | ||
else: | ||
n_node_attr = 0 | ||
for i in range(0, n_layers): | ||
self.add_module("gcl_%d" % i, E_GCL_mask(self.hidden_nf, self.hidden_nf, self.hidden_nf, edges_in_d=in_edge_nf, nodes_attr_dim=n_node_attr, act_fn=act_fn, recurrent=True, coords_weight=coords_weight, attention=attention)) | ||
|
||
self.node_dec = nn.Sequential(nn.Linear(self.hidden_nf, self.hidden_nf), | ||
act_fn, | ||
nn.Linear(self.hidden_nf, self.hidden_nf)) | ||
|
||
self.graph_dec = nn.Sequential(nn.Linear(self.hidden_nf, self.hidden_nf), | ||
act_fn, | ||
nn.Linear(self.hidden_nf, 1)) | ||
self.to(self.device) | ||
|
||
def forward(self, h0, x, edges, edge_attr, node_mask, edge_mask, n_nodes): | ||
h = self.embedding(h0) | ||
for i in range(0, self.n_layers): | ||
if self.node_attr: | ||
h, _, _ = self._modules["gcl_%d" % i](h, edges, x, node_mask, edge_mask, edge_attr=edge_attr, node_attr=h0, n_nodes=n_nodes) | ||
else: | ||
h, _, _ = self._modules["gcl_%d" % i](h, edges, x, node_mask, edge_mask, edge_attr=edge_attr, | ||
node_attr=None, n_nodes=n_nodes) | ||
|
||
h = self.node_dec(h) | ||
h = h * node_mask | ||
h = h.view(-1, n_nodes, self.hidden_nf) | ||
h = torch.sum(h, dim=1) | ||
pred = self.graph_dec(h) | ||
return pred.squeeze(1) | ||
|
||
|
||
|
Oops, something went wrong.