Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merge upstream changes #269

Merged
merged 4 commits into from
Mar 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion direct/data/datasets_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,6 @@ class RandomAugmentationTransformsConfig(BaseConfig):
random_flip_probability: float = 0.0
random_reverse_probability: float = 0.0


@dataclass
class NormalizationTransformConfig(BaseConfig):
scaling_key: Optional[str] = "masked_kspace"
Expand Down
41 changes: 20 additions & 21 deletions direct/data/mri_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -640,14 +640,12 @@ def __call__(self, sample: Dict[str, Any], coil_dim: int = 0) -> Dict[str, Any]:

class ReconstructionType(str, Enum):
"""Reconstruction method for :class:`ComputeImage` transform."""

rss = "rss"
complex = "complex"
complex_mod = "complex_mod"
sense = "sense"
sense_mod = "sense_mod"
ifft = "ifft"

RSS = "rss"
COMPLEX = "complex"
COMPLEX_MOD = "complex_mod"
SENSE = "sense"
SENSE_MOD = "sense_mod"
IFFT = "ifft"

class ComputeImageModule(DirectModule):
"""Compute Image transform."""
Expand All @@ -657,7 +655,7 @@ def __init__(
kspace_key: KspaceKey,
target_key: str,
backward_operator: Callable,
type_reconstruction: ReconstructionType = ReconstructionType.rss,
type_reconstruction: ReconstructionType = ReconstructionType.RSS,
) -> None:
"""Inits :class:`ComputeImageModule`.

Expand All @@ -670,8 +668,9 @@ def __init__(
backward_operator: callable
The backward operator, e.g. some form of inverse FFT (centered or uncentered).
type_reconstruction: ReconstructionType
Type of reconstruction. Can be "complex", "complex_mod", "sense", "sense_mod", "rss" or "ifft".
Default: ReconstructionType.rss.
Type of reconstruction. Can be ReconstructionType.COMPLEX, ReconstructionType.COMPLEX_MOD,
ReconstructionType.SENSE,, ReconstructionType.SENSE_MOD, ReconstructionType.IFFT.
Default: ReconstructionType.RSS.
"""
super().__init__()
self.backward_operator = backward_operator
Expand All @@ -697,14 +696,14 @@ def forward(self, sample: Dict[str, Any]) -> Dict[str, Any]:
dim = self.spatial_dims["2D"] if kspace_data.ndim == 5 else self.spatial_dims["3D"]
# Get complex-valued data solution
image = self.backward_operator(kspace_data, dim=dim)
if self.type_reconstruction == ReconstructionType.ifft:
if self.type_reconstruction == ReconstructionType.IFFT:
sample[self.target_key] = image
elif self.type_reconstruction in [
ReconstructionType.complex,
ReconstructionType.complex_mod,
ReconstructionType.COMPLEX,
ReconstructionType.COMPLEX_MOD,
]:
sample[self.target_key] = image.sum(self.coil_dim)
elif self.type_reconstruction == ReconstructionType.rss:
elif self.type_reconstruction == ReconstructionType.RSS:
sample[self.target_key] = T.root_sum_of_squares(image, dim=self.coil_dim)
else:
if "sensitivity_map" not in sample:
Expand All @@ -716,8 +715,8 @@ def forward(self, sample: Dict[str, Any]) -> Dict[str, Any]:
self.coil_dim
)
if self.type_reconstruction in [
ReconstructionType.complex_mod,
ReconstructionType.sense_mod,
ReconstructionType.COMPLEX_MOD,
ReconstructionType.SENSE_MOD,
]:
sample[self.target_key] = T.modulus(sample[self.target_key], self.complex_dim)
return sample
Expand Down Expand Up @@ -1546,7 +1545,7 @@ def build_post_mri_transforms(
sensitivity_maps_espirit_max_iters: Optional[int] = 30,
delete_acs_mask: bool = True,
delete_kspace: bool = True,
image_recon_type: ReconstructionType = ReconstructionType.rss,
image_recon_type: ReconstructionType = ReconstructionType.RSS,
scaling_key: TransformKey = TransformKey.MASKED_KSPACE,
scale_percentile: Optional[float] = 0.99,
) -> object:
Expand Down Expand Up @@ -1584,7 +1583,7 @@ def build_post_mri_transforms(
delete_kspace : bool
If True will delete key `kspace` (fully sampled k-space). Default: True.
image_recon_type : ReconstructionType
Type to reconstruct target image. Default: ReconstructionType.rss.
Type to reconstruct target image. Default: ReconstructionType.RSS.
scaling_key : TransformKey
Key in sample to scale scalable items in sample. Default: TransformKey.MASKED_KSPACE.
scale_percentile : float, optional
Expand Down Expand Up @@ -1666,7 +1665,7 @@ def build_mri_transforms(
sensitivity_maps_espirit_max_iters: Optional[int] = 30,
delete_acs_mask: bool = True,
delete_kspace: bool = True,
image_recon_type: ReconstructionType = ReconstructionType.rss,
image_recon_type: ReconstructionType = ReconstructionType.RSS,
pad_coils: Optional[int] = None,
scaling_key: TransformKey = TransformKey.MASKED_KSPACE,
scale_percentile: Optional[float] = 0.99,
Expand Down Expand Up @@ -1737,7 +1736,7 @@ def build_mri_transforms(
delete_kspace : bool
If True will delete key `kspace` (fully sampled k-space). Default: True.
image_recon_type : ReconstructionType
Type to reconstruct target image. Default: ReconstructionType.rss.
Type to reconstruct target image. Default: ReconstructionType.RSS.
pad_coils : int
Number of coils to pad data to.
scaling_key : TransformKey
Expand Down
2 changes: 1 addition & 1 deletion direct/nn/get_nn_model_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ def _get_relu_activation(activation: ActivationType = ActivationType.RELU, **kwa
"""
if activation == ActivationType.PRELU:
return nn.PReLU(**kwargs)
if activation == ActivationType.LEAKYRELU:
if activation == ActivationType.LEAKY_RELU:
return nn.LeakyReLU(**kwargs)
return nn.ReLU(**kwargs)

Expand Down
6 changes: 3 additions & 3 deletions direct/nn/types.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,7 @@
class ActivationType(DirectEnum):
RELU = "relu"
PRELU = "prelu"
LEAKYRELU = "leaky_relu"
LEAKY_RELU = "leaky_relu"


class ModelName(DirectEnum):
Expand All @@ -20,9 +20,9 @@ class ModelName(DirectEnum):


class InitType(DirectEnum):
INPUTIMAGE = "input_image"
INPUT_IMAGE = "input_image"
SENSE = "sense"
ZEROFILLED = "zero_filled"
ZERO_FILLED = "zero_filled"
ZEROS = "zeros"


Expand Down
56 changes: 28 additions & 28 deletions direct/nn/varsplitnet/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,31 +16,31 @@ class MRIVarSplitNetConfig(ModelConfig):
kspace_no_parameter_sharing: bool = True
image_model_architecture: str = ModelName.UNET
kspace_model_architecture: Optional[str] = None
image_resnet_hidden_channels: int = 128
image_resnet_num_blocks: int = 15
image_resnet_batchnorm: bool = True
image_resnet_scale: float = 0.1
image_unet_num_filters: int = 32
image_unet_num_pool_layers: int = 4
image_unet_dropout: float = 0.0
image_didn_hidden_channels: int = 16
image_didn_num_dubs: int = 6
image_didn_num_convs_recon: int = 9
kspace_resnet_hidden_channels: int = 64
kspace_resnet_num_blocks: int = 1
kspace_resnet_batchnorm: bool = True
kspace_resnet_scale: float = 0.1
kspace_unet_num_filters: int = 16
kspace_unet_num_pool_layers: int = 4
kspace_unet_dropout: float = 0.0
kspace_didn_hidden_channels: int = 8
kspace_didn_num_dubs: int = 6
kspace_didn_num_convs_recon: int = 9
image_conv_hidden_channels: int = 64
image_conv_n_convs: int = 15
image_conv_activation: str = ActivationType.RELU
image_conv_batchnorm: bool = False
kspace_conv_hidden_channels: int = 64
kspace_conv_n_convs: int = 15
kspace_conv_activation: str = ActivationType.PRELU
kspace_conv_batchnorm: bool = False
image_resnet_hidden_channels: Optional[int] = 128
image_resnet_num_blocks: Optional[int] = 15
image_resnet_batchnorm: Optional[bool] = True
image_resnet_scale: Optional[float] = 0.1
image_unet_num_filters: Optional[int] = 32
image_unet_num_pool_layers: Optional[int] = 4
image_unet_dropout: Optional[float] = 0.0
image_didn_hidden_channels: Optional[int] = 16
image_didn_num_dubs: Optional[int] = 6
image_didn_num_convs_recon: Optional[int] = 9
kspace_resnet_hidden_channels: Optional[int] = 64
kspace_resnet_num_blocks: Optional[int] = 1
kspace_resnet_batchnorm: Optional[bool] = True
kspace_resnet_scale: Optional[float] = 0.1
kspace_unet_num_filters: Optional[int] = 16
kspace_unet_num_pool_layers: Optional[int] = 4
kspace_unet_dropout: Optional[float] = 0.0
kspace_didn_hidden_channels: Optional[int] = 8
kspace_didn_num_dubs: Optional[int] = 6
kspace_didn_num_convs_recon: Optional[int] = 9
image_conv_hidden_channels: Optional[int] = 64
image_conv_n_convs: Optional[int] = 15
image_conv_activation: Optional[str] = ActivationType.RELU
image_conv_batchnorm: Optional[bool] = False
kspace_conv_hidden_channels: Optional[int] = 64
kspace_conv_n_convs: Optional[int] = 15
kspace_conv_activation: Optional[str] = ActivationType.PRELU
kspace_conv_batchnorm: Optional[bool] = False
12 changes: 6 additions & 6 deletions tests/tests_data/test_mri_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -380,11 +380,11 @@ def test_random_rotation(shape, degree):
@pytest.mark.parametrize(
"type_recon, complex_output",
[
[ReconstructionType.complex, True],
[ReconstructionType.complex_mod, False],
[ReconstructionType.sense, True],
[ReconstructionType.sense_mod, False],
[ReconstructionType.rss, False],
[ReconstructionType.COMPLEX, True],
[ReconstructionType.COMPLEX_MOD, False],
[ReconstructionType.SENSE, True],
[ReconstructionType.SENSE_MOD, False],
[ReconstructionType.RSS, False],
],
)
def test_ComputeImage(shape, type_recon, complex_output):
Expand Down Expand Up @@ -518,7 +518,7 @@ def test_EstimateSensitivityMap3D(
else:
transform = EstimateSensitivityMap(**args)
if shape[0] == 1 or sense_map_in_sample:
with pytest.warns(None):
with warnings.catch_warnings(record=True):
sample = transform(sample)
else:
sample = transform(sample)
Expand Down
2 changes: 1 addition & 1 deletion tests/tests_nn/test_conjgradnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ def create_input(shape):
@pytest.mark.parametrize(
"cg_param_update_type", [CGUpdateType.FR, CGUpdateType.PRP, CGUpdateType.DY, CGUpdateType.BAN]
)
@pytest.mark.parametrize("image_init", [InitType.SENSE, InitType.ZEROFILLED, InitType.ZEROS, "invalid"])
@pytest.mark.parametrize("image_init", [InitType.SENSE, InitType.ZERO_FILLED, InitType.ZEROS, "invalid"])
@pytest.mark.parametrize("no_parameter_sharing", [True, False])
@pytest.mark.parametrize("cg_iters", [5, 20])
@pytest.mark.parametrize("cg_tol", [1e-2, 1e-8])
Expand Down
2 changes: 1 addition & 1 deletion tests/tests_nn/test_recurrentvarnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ def create_input(shape):
"learned_initializer, initializer_initialization, initializer_channels, initializer_dilations",
[
[True, InitType.SENSE, (4, 4, 8, 8), (1, 1, 1, 2)],
[True, InitType.ZEROFILLED, (2, 4, 2, 4), (1, 2, 1, 3)],
[True, InitType.ZERO_FILLED, (2, 4, 2, 4), (1, 2, 1, 3)],
[False, None, None, None],
],
)
Expand Down
4 changes: 2 additions & 2 deletions tests/tests_nn/test_varsplitnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ def create_input(shape):
@pytest.mark.parametrize("shape", [[4, 3, 32, 32], [4, 5, 40, 20]])
@pytest.mark.parametrize("num_steps_reg", [2, 3])
@pytest.mark.parametrize("num_steps_dc", [1, 4])
@pytest.mark.parametrize("image_init", [InitType.SENSE, InitType.ZEROFILLED])
@pytest.mark.parametrize("image_init", [InitType.SENSE, InitType.ZERO_FILLED])
@pytest.mark.parametrize("no_parameter_sharing", [True, False])
@pytest.mark.parametrize(
"image_model_architecture, image_model_kwargs",
Expand All @@ -32,7 +32,7 @@ def create_input(shape):
{
"image_conv_hidden_channels": 8,
"image_conv_n_convs": 3,
"image_conv_activation": ActivationType.LEAKYRELU,
"image_conv_activation": ActivationType.LEAKY_RELU,
},
],
],
Expand Down
Loading