-
Notifications
You must be signed in to change notification settings - Fork 43
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
92c0ef9
commit 57ca113
Showing
1 changed file
with
184 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
# coding=utf-8 | ||
# Copyright (c) DIRECT Contributors | ||
|
||
import functools | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
|
||
from direct.config.defaults import DefaultConfig, FunctionConfig, LossConfig, TrainingConfig, ValidationConfig | ||
from direct.data.transforms import fft2, ifft2 | ||
from direct.nn.unet.config import Unet2dConfig | ||
from direct.nn.unet.unet_2d import Unet2d | ||
from direct.nn.unet.unet_engine import Unet2dJSSLEngine, Unet2dSSLEngine | ||
|
||
|
||
def create_sample(**kwargs): | ||
sample = dict() | ||
for k, v in locals()["kwargs"].items(): | ||
sample[k] = v | ||
return sample | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"shape", | ||
[(4, 3, 10, 16, 2), (5, 1, 10, 12, 2)], | ||
) | ||
@pytest.mark.parametrize( | ||
"loss_fns", | ||
[["l1_loss", "ssim_loss", "l2_loss", "kspace_nmae_loss"]], | ||
) | ||
@pytest.mark.parametrize( | ||
"num_filters, num_pool_layers, image_initialization", | ||
[[4, 2, "sense"]], | ||
) | ||
@pytest.mark.parametrize( | ||
"normalized", | ||
[True, False], | ||
) | ||
def test_unet_ssl_engine(shape, loss_fns, num_filters, num_pool_layers, normalized, image_initialization): | ||
# Operators | ||
forward_operator = functools.partial(fft2, centered=True) | ||
backward_operator = functools.partial(ifft2, centered=True) | ||
# Configs | ||
loss_config = LossConfig(losses=[FunctionConfig(loss) for loss in loss_fns]) | ||
training_config = TrainingConfig(loss=loss_config) | ||
validation_config = ValidationConfig(crop=None) | ||
model_config = Unet2dConfig( | ||
num_filters=num_filters, num_pool_layers=num_pool_layers, image_initialization=image_initialization | ||
) | ||
config = DefaultConfig(training=training_config, validation=validation_config, model=model_config) | ||
# Models | ||
model = Unet2d( | ||
forward_operator, | ||
backward_operator, | ||
num_filters=model_config.num_filters, | ||
num_pool_layers=model_config.num_pool_layers, | ||
dropout_probability=model_config.dropout_probability, | ||
image_initialization=model_config.image_initialization, | ||
) | ||
sensitivity_model = torch.nn.Conv2d(2, 2, kernel_size=1) | ||
# Define engine | ||
engine = Unet2dSSLEngine(config, model, "cpu", fft2, ifft2, sensitivity_model=sensitivity_model) | ||
engine.ndim = 2 | ||
|
||
# Simulate training | ||
# Test _do_iteration function with a single data batch | ||
data = create_sample( | ||
input_sampling_mask=torch.from_numpy(np.random.rand(1, 1, shape[2], shape[3], 1)).round().bool(), | ||
target_sampling_mask=torch.from_numpy(np.random.rand(1, 1, shape[2], shape[3], 1)).round().bool(), | ||
input_kspace=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
kspace=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
sensitivity_map=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
target=torch.from_numpy(np.random.randn(shape[0], shape[2], shape[3])).float(), | ||
scaling_factor=torch.ones(shape[0]), | ||
) | ||
loss_fns = engine.build_loss() | ||
out = engine._do_iteration(data, loss_fns) | ||
assert out.output_image.shape == (shape[0],) + tuple(shape[2:-1]) | ||
|
||
# Simulate validation | ||
engine.model.eval() | ||
# Test _do_iteration function with a single data batch | ||
data = create_sample( | ||
sampling_mask=torch.from_numpy(np.random.rand(1, 1, shape[2], shape[3], 1)).round().bool(), | ||
masked_kspace=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
kspace=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
sensitivity_map=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
target=torch.from_numpy(np.random.randn(shape[0], shape[2], shape[3])).float(), | ||
scaling_factor=torch.ones(shape[0]), | ||
) | ||
loss_fns = engine.build_loss() | ||
out = engine._do_iteration(data, loss_fns) | ||
assert out.output_image.shape == (shape[0],) + tuple(shape[2:-1]) | ||
|
||
|
||
@pytest.mark.parametrize( | ||
"shape", | ||
[(4, 3, 10, 16, 2), (5, 1, 10, 12, 2)], | ||
) | ||
@pytest.mark.parametrize( | ||
"loss_fns", | ||
[["l1_loss", "ssim_loss", "l2_loss", "kspace_nmae_loss"]], | ||
) | ||
@pytest.mark.parametrize( | ||
"num_filters, num_pool_layers, image_initialization", | ||
[[4, 2, "sense"]], | ||
) | ||
@pytest.mark.parametrize( | ||
"normalized", | ||
[True, False], | ||
) | ||
def test_unet_jssl_engine(shape, loss_fns, num_filters, num_pool_layers, normalized, image_initialization): | ||
# Operators | ||
forward_operator = functools.partial(fft2, centered=True) | ||
backward_operator = functools.partial(ifft2, centered=True) | ||
# Configs | ||
loss_config = LossConfig(losses=[FunctionConfig(loss) for loss in loss_fns]) | ||
training_config = TrainingConfig(loss=loss_config) | ||
validation_config = ValidationConfig(crop=None) | ||
model_config = Unet2dConfig( | ||
num_filters=num_filters, num_pool_layers=num_pool_layers, image_initialization=image_initialization | ||
) | ||
config = DefaultConfig(training=training_config, validation=validation_config, model=model_config) | ||
# Models | ||
model = Unet2d( | ||
forward_operator, | ||
backward_operator, | ||
num_filters=model_config.num_filters, | ||
num_pool_layers=model_config.num_pool_layers, | ||
dropout_probability=model_config.dropout_probability, | ||
image_initialization=model_config.image_initialization, | ||
) | ||
sensitivity_model = torch.nn.Conv2d(2, 2, kernel_size=1) | ||
# Define engine | ||
engine = Unet2dJSSLEngine(config, model, "cpu", fft2, ifft2, sensitivity_model=sensitivity_model) | ||
engine.ndim = 2 | ||
|
||
# Simulate training (SSL) | ||
# Test _do_iteration function with a single data batch | ||
data = create_sample( | ||
input_sampling_mask=torch.from_numpy(np.random.rand(1, 1, shape[2], shape[3], 1)).round().bool(), | ||
target_sampling_mask=torch.from_numpy(np.random.rand(1, 1, shape[2], shape[3], 1)).round().bool(), | ||
input_kspace=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
kspace=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
sensitivity_map=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
target=torch.from_numpy(np.random.randn(shape[0], shape[2], shape[3])).float(), | ||
scaling_factor=torch.ones(shape[0]), | ||
is_ssl_training=torch.ones(shape[0]).bool(), | ||
) | ||
loss_fns = engine.build_loss() | ||
out = engine._do_iteration(data, loss_fns) | ||
assert out.output_image.shape == (shape[0],) + tuple(shape[2:-1]) | ||
|
||
# Simulate training (SL) | ||
# Test _do_iteration function with a single data batch | ||
data = create_sample( | ||
sampling_mask=torch.from_numpy(np.random.rand(1, 1, shape[2], shape[3], 1)).round().bool(), | ||
masked_kspace=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
kspace=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
sensitivity_map=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
target=torch.from_numpy(np.random.randn(shape[0], shape[2], shape[3])).float(), | ||
scaling_factor=torch.ones(shape[0]), | ||
is_ssl_training=torch.zeros(shape[0]).bool(), | ||
) | ||
loss_fns = engine.build_loss() | ||
out = engine._do_iteration(data, loss_fns) | ||
assert out.output_image.shape == (shape[0],) + tuple(shape[2:-1]) | ||
|
||
# Simulate validation | ||
engine.model.eval() | ||
# Test _do_iteration function with a single data batch | ||
data = create_sample( | ||
sampling_mask=torch.from_numpy(np.random.rand(1, 1, shape[2], shape[3], 1)).round().bool(), | ||
masked_kspace=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
kspace=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
sensitivity_map=torch.from_numpy(np.random.randn(shape[0], shape[1], shape[2], shape[3], 2)).float(), | ||
target=torch.from_numpy(np.random.randn(shape[0], shape[2], shape[3])).float(), | ||
scaling_factor=torch.ones(shape[0]), | ||
is_ssl_training=torch.zeros(shape[0]).bool(), | ||
) | ||
loss_fns = engine.build_loss() | ||
out = engine._do_iteration(data, loss_fns) | ||
assert out.output_image.shape == (shape[0],) + tuple(shape[2:-1]) |