-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
361 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,169 @@ | ||
# from mpi4py.MPI import COMM_WORLD | ||
# import debugpy | ||
# debugpy.listen(3000 + COMM_WORLD.rank) | ||
# debugpy.wait_for_client() | ||
import numpy as np | ||
import math | ||
import matplotlib.pyplot as plt | ||
from copy import deepcopy | ||
from firedrake import File | ||
import firedrake as fire | ||
import spyro | ||
|
||
|
||
def check_gradient(Wave_obj_guess, dJ, rec_out_exact, Jm, plot=False): | ||
steps = [1e-3, 1e-4, 1e-5] # step length | ||
|
||
errors = [] | ||
V_c = Wave_obj_guess.function_space | ||
dm = fire.Function(V_c) | ||
size, = np.shape(dm.dat.data[:]) | ||
dm_data = np.random.rand(size) | ||
# np.save(f"dmdata{COMM_WORLD.rank}", dm_data) | ||
# dm_data = np.load(f"dmdata{COMM_WORLD.rank}.npy") | ||
dm.dat.data[:] = dm_data | ||
|
||
for step in steps: | ||
|
||
Wave_obj_guess.reset_pressure() | ||
c_guess = fire.Constant(2.0) + step*dm | ||
Wave_obj_guess.initial_velocity_model = c_guess | ||
Wave_obj_guess.forward_solve() | ||
misfit_plusdm = rec_out_exact - Wave_obj_guess.receivers_output | ||
J_plusdm = spyro.utils.compute_functional(Wave_obj_guess, misfit_plusdm) | ||
|
||
grad_fd = (J_plusdm - Jm) / (step) | ||
projnorm = fire.assemble(dJ * dm * fire.dx(scheme=Wave_obj_guess.quadrature_rule)) | ||
|
||
error = 100 * ((grad_fd - projnorm) / projnorm) | ||
|
||
errors.append(error) | ||
|
||
errors = np.array(errors) | ||
|
||
# Checking if error is first order in step | ||
theory = [t for t in steps] | ||
theory = [errors[0] * th / theory[0] for th in theory] | ||
if plot: | ||
plt.close() | ||
plt.plot(steps, errors, label="Error") | ||
plt.plot(steps, theory, "--", label="first order") | ||
plt.legend() | ||
plt.title(" Adjoint gradient versus finite difference gradient") | ||
plt.xlabel("Step") | ||
plt.ylabel("Error %") | ||
plt.savefig("gradient_error_verification.png") | ||
plt.close() | ||
|
||
# Checking if every error is less than 1 percent | ||
|
||
test1 = abs(errors[-1]) < 1 | ||
print(f"Last gradient error less than 1 percent: {test1}") | ||
|
||
# Checking if error follows expected finite difference error convergence | ||
test2 = math.isclose(np.log(abs(theory[-1])), np.log(abs(errors[-1])), rel_tol=1e-1) | ||
|
||
print(f"Gradient error behaved as expected: {test2}") | ||
|
||
assert all([test1, test2]) | ||
|
||
|
||
final_time = 1.0 | ||
|
||
dictionary = {} | ||
dictionary["options"] = { | ||
"cell_type": "Q", # simplexes such as triangles or tetrahedra (T) or quadrilaterals (Q) | ||
"variant": "lumped", # lumped, equispaced or DG, default is lumped | ||
"degree": 4, # p order | ||
"dimension": 2, # dimension | ||
} | ||
|
||
dictionary["parallelism"] = { | ||
"type": "spatial", # options: automatic (same number of cores for evey processor) or spatial | ||
"shot_ids_per_propagation": [[0], [1]], | ||
} | ||
|
||
dictionary["mesh"] = { | ||
"Lz": 3.0, # depth in km - always positive # Como ver isso sem ler a malha? | ||
"Lx": 3.0, # width in km - always positive | ||
"Ly": 0.0, # thickness in km - always positive | ||
"mesh_file": None, | ||
"mesh_type": "firedrake_mesh", | ||
} | ||
|
||
dictionary["acquisition"] = { | ||
"source_type": "ricker", | ||
"source_locations": [(-1.1, 1.3), (-1.1, 1.7)], | ||
"frequency": 5.0, | ||
"delay": 1.5, | ||
"delay_type": "multiples_of_minimun", | ||
"receiver_locations": spyro.create_transect((-1.8, 1.2), (-1.8, 1.8), 10), | ||
} | ||
|
||
dictionary["time_axis"] = { | ||
"initial_time": 0.0, # Initial time for event | ||
"final_time": final_time, # Final time for event | ||
"dt": 0.0005, # timestep size | ||
"amplitude": 1, # the Ricker has an amplitude of 1. | ||
"output_frequency": 100, # how frequently to output solution to pvds - Perguntar Daiane ''post_processing_frequnecy' | ||
"gradient_sampling_frequency": 1, # how frequently to save solution to RAM - Perguntar Daiane 'gradient_sampling_frequency' | ||
} | ||
|
||
dictionary["visualization"] = { | ||
"forward_output": True, | ||
"forward_output_filename": "results/forward_true.pvd", | ||
"fwi_velocity_model_output": False, | ||
"velocity_model_filename": None, | ||
"gradient_output": False, | ||
"gradient_filename": "results/Gradient.pvd", | ||
"adjoint_output": False, | ||
"adjoint_filename": None, | ||
"debug_output": False, | ||
} | ||
|
||
|
||
def get_forward_model(load_true=False): | ||
if load_true is False: | ||
Wave_obj_exact = spyro.AcousticWave(dictionary=dictionary) | ||
Wave_obj_exact.set_mesh(mesh_parameters={"dx": 0.1}) | ||
# Wave_obj_exact.set_initial_velocity_model(constant=3.0) | ||
cond = fire.conditional(Wave_obj_exact.mesh_z > -1.5, 1.5, 3.5) | ||
Wave_obj_exact.set_initial_velocity_model( | ||
conditional=cond, | ||
# output=True | ||
) | ||
# spyro.plots.plot_model(Wave_obj_exact, abc_points=[(-1, 1), (-2, 1), (-2, 4), (-1, 2)]) | ||
Wave_obj_exact.forward_solve() | ||
# forward_solution_exact = Wave_obj_exact.forward_solution | ||
rec_out_exact = Wave_obj_exact.receivers_output | ||
# np.save("rec_out_exact", rec_out_exact) | ||
|
||
else: | ||
rec_out_exact = np.load("rec_out_exact.npy") | ||
|
||
Wave_obj_guess = spyro.AcousticWave(dictionary=dictionary) | ||
Wave_obj_guess.set_mesh(mesh_parameters={"dx": 0.1}) | ||
Wave_obj_guess.set_initial_velocity_model(constant=2.0) | ||
Wave_obj_guess.forward_solve() | ||
rec_out_guess = Wave_obj_guess.receivers_output | ||
|
||
return rec_out_exact, rec_out_guess, Wave_obj_guess | ||
|
||
|
||
def test_gradient_supershot(): | ||
rec_out_exact, rec_out_guess, Wave_obj_guess = get_forward_model(load_true=False) | ||
|
||
misfit = rec_out_exact - rec_out_guess | ||
|
||
Jm = spyro.utils.compute_functional(Wave_obj_guess, misfit) | ||
print(f"Cost functional : {Jm}", flush=True) | ||
|
||
# compute the gradient of the control (to be verified) | ||
dJ = Wave_obj_guess.gradient_solve() | ||
File("gradient.pvd").write(dJ) | ||
|
||
check_gradient(Wave_obj_guess, dJ, rec_out_exact, Jm, plot=True) | ||
|
||
|
||
if __name__ == "__main__": | ||
test_gradient_supershot() |
Oops, something went wrong.