-
Notifications
You must be signed in to change notification settings - Fork 14k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
173 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
173 changes: 173 additions & 0 deletions
173
0695-Max-Area-of-Island/Article/0695-Max-Area-of-Island.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
# LeetCode 图解 | | ||
|
||
> 本文首发于公众号「图解面试算法」,是 [图解 LeetCode](<https://github.com/MisterBooo/LeetCodeAnimation>) 系列文章之一。 | ||
> | ||
> 同步博客:https://www.algomooc.com | ||
|
||
本题解作者:nettee | ||
|
||
## 题目描述 | ||
|
||
给定一个包含了一些 `0` 和 `1` 的非空二维数组 `grid`。 | ||
|
||
一个**岛屿**是由一些相邻的 `1` (代表土地) 构成的组合,这里的「相邻」要求两个 `1` 必须在水平或者竖直方向上相邻。你可以假设 `grid` 的四个边缘都被 `0`(代表水)包围着。 | ||
|
||
找到给定的二维数组中最大的岛屿面积。(如果没有岛屿,则返回面积为 `0`。) | ||
|
||
**示例 1:** | ||
|
||
``` | ||
[[0,0,1,0,0,0,0,1,0,0,0,0,0], | ||
[0,0,0,0,0,0,0,1,1,1,0,0,0], | ||
[0,1,1,0,1,0,0,0,0,0,0,0,0], | ||
[0,1,0,0,1,1,0,0,1,0,1,0,0], | ||
[0,1,0,0,1,1,0,0,1,1,1,0,0], | ||
[0,0,0,0,0,0,0,0,0,0,1,0,0], | ||
[0,0,0,0,0,0,0,1,1,1,0,0,0], | ||
[0,0,0,0,0,0,0,1,1,0,0,0,0]] | ||
``` | ||
|
||
|
||
对于上面这个给定矩阵应返回 6。注意答案不应该是 11 ,因为岛屿只能包含水平或垂直的四个方向的 `1` 。 | ||
|
||
**示例 2:** | ||
|
||
``` | ||
[[0,0,0,0,0,0,0,0]] | ||
``` | ||
|
||
|
||
对于上面这个给定的矩阵, 返回 0。 | ||
|
||
注意: 给定的矩阵 `grid` 的长度和宽度都不超过 50。 | ||
|
||
## 题目解析 | ||
|
||
这道题的主要思路是深度优先搜索。每次走到一个是 1 的格子,就搜索整个岛屿,并计算当前岛屿的面积。最后返回岛屿面积的最大值。 | ||
|
||
网格可以看成是一个无向图的结构,每个格子和它上下左右的四个格子相邻。如果四个相邻的格子坐标合法,且是陆地,就可以继续搜索。 | ||
|
||
在深度优先搜索的时候要注意避免重复遍历。我们可以把已经遍历过的陆地改成 2,这样遇到 2 我们就知道已经遍历过这个格子了,不进行重复遍历。 | ||
|
||
## 动画理解 | ||
|
||
![](../Animation/Animation.gif) | ||
|
||
## 参考代码 | ||
|
||
C++ 代码: | ||
|
||
```C++ | ||
class Solution { | ||
public: | ||
int maxAreaOfIsland(vector<vector<int>>& grid) { | ||
int res = 0; | ||
for (int r = 0; r < grid.size(); r++) { | ||
for (int c = 0; c < grid[0].size(); c++) { | ||
if (grid[r][c] == 1) { | ||
int a = area(grid, r, c); | ||
res = max(res, a); | ||
} | ||
} | ||
} | ||
return res; | ||
} | ||
|
||
int area(vector<vector<int>>& grid, int r, int c) { | ||
if (!(inArea(grid, r, c))) { | ||
return 0; | ||
} | ||
if (grid[r][c] != 1) { | ||
return 0; | ||
} | ||
grid[r][c] = 2; | ||
|
||
return 1 | ||
+ area(grid, r - 1, c) | ||
+ area(grid, r + 1, c) | ||
+ area(grid, r, c - 1) | ||
+ area(grid, r, c + 1); | ||
} | ||
|
||
bool inArea(vector<vector<int>>& grid, int r, int c) { | ||
return 0 <= r && r < grid.size() | ||
&& 0 <= c && c < grid[0].size(); | ||
} | ||
}; | ||
``` | ||
|
||
Java 代码: | ||
|
||
```Java | ||
class Solution { | ||
public int maxAreaOfIsland(int[][] grid) { | ||
int res = 0; | ||
for (int r = 0; r < grid.length; r++) { | ||
for (int c = 0; c < grid[0].length; c++) { | ||
if (grid[r][c] == 1) { | ||
int a = area(grid, r, c); | ||
res = Math.max(res, a); | ||
} | ||
} | ||
} | ||
return res; | ||
} | ||
|
||
int area(int[][] grid, int r, int c) { | ||
if (!inArea(grid, r, c)) { | ||
return 0; | ||
} | ||
if (grid[r][c] != 1) { | ||
return 0; | ||
} | ||
grid[r][c] = 2; | ||
|
||
return 1 | ||
+ area(grid, r - 1, c) | ||
+ area(grid, r + 1, c) | ||
+ area(grid, r, c - 1) | ||
+ area(grid, r, c + 1); | ||
} | ||
|
||
boolean inArea(int[][] grid, int r, int c) { | ||
return 0 <= r && r < grid.length | ||
&& 0 <= c && c < grid[0].length; | ||
} | ||
} | ||
``` | ||
|
||
Python 代码: | ||
|
||
```Python | ||
class Solution: | ||
def maxAreaOfIsland(self, grid: List[List[int]]) -> int: | ||
res = 0 | ||
for r in range(len(grid)): | ||
for c in range(len(grid[0])): | ||
if grid[r][c] == 1: | ||
a = self.area(grid, r, c) | ||
res = max(res, a) | ||
return res | ||
|
||
def area(self, grid: List[List[int]], r: int, c: int) -> int: | ||
if not self.inArea(grid, r, c): | ||
return 0 | ||
if grid[r][c] != 1: | ||
return 0 | ||
grid[r][c] = 2 | ||
|
||
return 1 \ | ||
+ self.area(grid, r - 1, c) \ | ||
+ self.area(grid, r + 1, c) \ | ||
+ self.area(grid, r, c - 1) \ | ||
+ self.area(grid, r, c + 1) | ||
|
||
def inArea(self, grid: List[List[int]], r: int, c: int) -> bool: | ||
return 0 <= r < len(grid) and 0 <= c < len(grid[0]) | ||
``` | ||
|
||
|
||
|
||
## 复杂度分析 | ||
|
||
设网格的边长为 n,则时间复杂度为 O(n²)。 |