Gset is the benchmark of Max-cut problem which is one of the combinatorial optimization problems.
Cited from : here
If you generate adjacency matrix, execute python file generate_graph.py
.
python3 generate_graph.py
Gset has 71 instances. The bellow is cited from here
instance | #vertices | #edges | Weight | Best known |
---|---|---|---|---|
G1 | 800 | 19,176 | +1 | 11,624 |
G2 | 800 | 19,176 | +1 | 11,620 |
G3 | 800 | 19,176 | +1 | 11,622 |
G4 | 800 | 19,176 | +1 | 11,646 |
G5 | 800 | 19,176 | +1 | 11,631 |
G6 | 800 | 19,176 | +1, -1 | 2,178 |
G7 | 800 | 19,176 | +1, -1 | 2,006 |
G8 | 800 | 19,176 | +1, -1 | 2,005 |
G9 | 800 | 19,176 | +1, -1 | 2,054 |
G10 | 800 | 19,176 | +1, -1 | 2,000 |
G11 | 800 | 1,600 | +1, -1 | 564 |
G12 | 800 | 1,600 | +1, -1 | 556 |
G13 | 800 | 1,600 | +1, -1 | 582 |
G14 | 800 | 4,694 | +1 | 3,064 |
G15 | 800 | 4,661 | +1 | 3,050 |
G16 | 800 | 4,672 | +1 | 3,052 |
G17 | 800 | 4,667 | +1 | 3,047 |
G18 | 800 | 4,694 | +1, -1 | 992 |
G19 | 800 | 4,661 | +1, -1 | 906 |
G20 | 800 | 4,672 | +1, -1 | 941 |
G21 | 800 | 4,667 | +1, -1 | 931 |
G22 | 2,000 | 19,990 | +1 | 13,359 |
G23 | 2,000 | 19,990 | +1 | 13,344 |
G24 | 2,000 | 19,990 | +1 | 13,337 |
G25 | 2,000 | 19,990 | +1 | 13,340 |
G26 | 2,000 | 19,990 | +1 | 13,328 |
G27 | 2,000 | 19,990 | +1, -1 | 3,341 |
G28 | 2,000 | 19,990 | +1, -1 | 3,298 |
G29 | 2,000 | 19,990 | +1, -1 | 3,405 |
G30 | 2,000 | 19,990 | +1, -1 | 3,413 |
G31 | 2,000 | 19,990 | +1, -1 | 3,310 |
G32 | 2,000 | 4,000 | +1, -1 | 1,410 |
G33 | 2,000 | 4,000 | +1, -1 | 1,382 |
G34 | 2,000 | 4,000 | +1, -1 | 1,384 |
G35 | 2,000 | 11,778 | +1 | 7,687 |
G36 | 2,000 | 11,766 | +1 | 7,680 |
G37 | 2,000 | 11,785 | +1 | 7,691 |
G38 | 2,000 | 11,779 | +1 | 7,688 |
G39 | 2,000 | 11,778 | +1, -1 | 2,408 |
G40 | 2,000 | 11,766 | +1, -1 | 2,400 |
G41 | 2,000 | 11,785 | +1, -1 | 2,405 |
G42 | 2,000 | 11,779 | +1, -1 | 2,481 |
G43 | 1,000 | 9,990 | +1 | 6,660 |
G44 | 1,000 | 9,990 | +1 | 6,650 |
G45 | 1,000 | 9,990 | +1 | 6,654 |
G46 | 1,000 | 9,990 | +1 | 6,649 |
G47 | 1,000 | 9,990 | +1 | 6,657 |
G48 | 3,000 | 6,000 | +1, -1 | 6,000 |
G49 | 3,000 | 6,000 | +1, -1 | 6,000 |
G50 | 3,000 | 6,000 | +1, -1 | 5,880 |
G51 | 1,000 | 5,909 | +1 | 3,848 |
G52 | 1,000 | 5,916 | +1 | 3,851 |
G53 | 1,000 | 5,914 | +1 | 3,850 |
G54 | 1,000 | 5,916 | +1 | 3,852 |
G55 | 5,000 | 12,498 | +1 | 10,299 |
G56 | 5,000 | 12,498 | +1, -1 | 4,017 |
G57 | 5,000 | 10,000 | +1, -1 | 3,494 |
G58 | 5,000 | 29,570 | +1 | 19,293 |
G59 | 5,000 | 29,570 | +1, -1 | 6,086 |
G60 | 7,000 | 17,148 | +1 | 14,188 |
G61 | 7,000 | 17,148 | +1, -1 | 5,796 |
G62 | 7,000 | 14,000 | +1, -1 | 4,870 |
G63 | 7,000 | 41,459 | +1 | 27,045 |
G64 | 7,000 | 41,459 | +1, -1 | 8,751 |
G65 | 8,000 | 16,000 | +1, -1 | 5,562 |
G66 | 9,000 | 18,000 | +1, -1 | 6,364 |
G67 | 10,000 | 20,000 | +1, -1 | 6,950 |
G70 | 10,000 | 9,999 | +1 | 9,591 |
G72 | 10,000 | 20,000 | +1, -1 | 7,006 |
G77 | 14,000 | 28,000 | +1, -1 | - |
G81 | 20,000 | 40,000 | +1, -1 | - |