Skip to content

Commit

Permalink
rebuild git indexs for smaller size
Browse files Browse the repository at this point in the history
  • Loading branch information
jinhailiang committed Mar 2, 2022
0 parents commit 87aeede
Show file tree
Hide file tree
Showing 47 changed files with 8,512 additions and 0 deletions.
5 changes: 5 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
*.pyc
.DS_Store
.idea/
capture/local_*/
*.so
12 changes: 12 additions & 0 deletions Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
FROM python:3.6.5
COPY ./api /vision/api/
COPY ./service /vision/service/
COPY ./dbnet_crnn /vision/dbnet_crnn
COPY ./requirements.txt /vision/requirements.txt
COPY ./server.py ./vision/server.py
ARG PIP_MIRROR=https://mirrors.aliyun.com/pypi/simple/
WORKDIR /vision
RUN mkdir capture\
&& pip install --upgrade pip -i ${PIP_MIRROR}\
&& pip install -r requirements.txt -i ${PIP_MIRROR}
CMD ["python3", "server.py"]
21 changes: 21 additions & 0 deletions LICENSE
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
MIT License

Copyright (c) 2019 美团点评

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
41 changes: 41 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# Vision UI

![GitHub](https://img.shields.io/badge/Python-3.6-blue)
![GitHub](https://img.shields.io/github/license/Meituan-Dianping/vision-diff)
![GitHub](https://img.shields.io/docker/cloud/build/brighthai/vision-ui)

## 什么是Vision UI

Vision UI是一组图像处理算法,来源于美团视觉测试工具,提供如视觉对比(增量式对比)、图像融合和文本识别。

本项目无需训练模型,基于训练模型的项目在[Vision-ml](https://github.com/Meituan-Dianping/vision)

## 特性

* 超越像素对比-[视觉对比](resources/vision_diff_cn.md)

* 基于模板匹配-[图像融合](resources/vision_merge.md)

* 集成模型-[文本识别](resources/vision_text.md)


## 效果展示
### 图像融合
| 1.png | 2.png | 3.png | merge |
| ------------------------------ | -------------------------------- | -------------------------------- | ------------------------------------- |
| ![](image/1_0.png) | ![](image/1_1.png) | ![](image/1_2.png) | ![](image/1_merge.png)

### 视觉对比

| base | comparison | diff |
| ------------------------------ | -------------------------------- | ------------------------------------- |
| ![](image/base_1.png) | ![](image/comp_1.png) | ![](image/diff_1.png) |




## License

This project is licensed under the [MIT](./LICENSE)


62 changes: 62 additions & 0 deletions api/vision_api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
from flask import jsonify
from flask import request
from flask import Blueprint
from flask import make_response
from service.image_diff import ImageDiff
from service.image_merge import Stitcher
from service.image_similar import HashSimilar
from service.image_text import get_image_text
from service.image_utils import get_pop_v

vision = Blueprint('vision', __name__, url_prefix='/vision')


@vision.route('/diff', methods=["POST"])
def vision_diff():
data = {
"code": 0,
"data": ImageDiff().get_image_score(request.json['image1'], request.json['image2'],
request.json['image_diff_name'])
}
return jsonify(data)


@vision.route('/merge', methods=["POST"])
def vision_merge():
data = {
"code": 0,
"data": Stitcher(request.json['image_list']).image_merge(
request.json['name'],
without_padding=request.json.get('without_padding')
)
}
return jsonify(data)


@vision.route('/similar', methods=["POST"])
def vision_similar():
data = {
"code": 0,
"data": HashSimilar().get_hash_similar(request.json['image1'], request.json['image2'])
}
return jsonify(data)


@vision.route('/pop', methods=["POST"])
def vision_pop():
data = {
"code": 0,
"data": get_pop_v(request.json['image'])
}
return jsonify(data)


@vision.route('/text', methods=["POST"])
def vision_text():
data = {
"code": 0,
"data": get_image_text(request.json['image'])
}
resp = make_response(jsonify(data))
resp.headers["Content-Type"] = "application/json;charset=utf-8"
return resp
Binary file added capture/image_1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
95 changes: 95 additions & 0 deletions dbnet_crnn/image_text.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
import cv2
import copy
import numpy as np
import dbnet_crnn.tools.utility as utility
from service.image_utils import get_center_pos
import dbnet_crnn.tools.predict_det as predict_det
import dbnet_crnn.tools.predict_rec as predict_rec


def sorted_boxes(dt_boxes):
"""
Sort text boxes in order from top to bottom, left to right
args:
dt_boxes(array):detected text boxes with shape [4, 2]
return:
sorted boxes(array) with shape [4, 2]
"""
num_boxes = dt_boxes.shape[0]
sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
_boxes = list(sorted_boxes)

for i in range(num_boxes - 1):
if abs(_boxes[i+1][0][1] - _boxes[i][0][1]) < 10 and (_boxes[i + 1][0][0] < _boxes[i][0][0]):
tmp = _boxes[i]
_boxes[i] = _boxes[i + 1]
_boxes[i + 1] = tmp
return _boxes


class ImageText(object):
def __init__(self):
args = utility.parse_args()
self.text_detector = predict_det.TextDetector(args, model_path='dbnet_crnn/modelv1.1/det/')
self.text_recognizer = predict_rec.TextRecognizer(args, model_path='dbnet_crnn/modelv1.1/rec/')

def get_rotate_crop_image(self, img, points):
'''
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0], [img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(img, M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img

def get_ocr(self, img, max_side_len):
ori_im = img.copy()
dt_boxes = self.text_detector(img, max_side_len)
if dt_boxes is None:
return None, None
img_crop_list = []
dt_boxes = sorted_boxes(dt_boxes)
for bno in range(len(dt_boxes)):
tmp_box = copy.deepcopy(dt_boxes[bno])
img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
img_crop_list.append(img_crop)
rec_res = self.text_recognizer(img_crop_list)
return dt_boxes, rec_res

def get_text(self, img, max_side_len, score_thresh=0.6):
result = []
dt_boxes, rec_res = self.get_ocr(img, max_side_len)
for roi_ocr in list(zip(dt_boxes, rec_res)):
roi_score = roi_ocr[1][1]
if roi_score > score_thresh:
result.append({
'pos': get_center_pos(roi_ocr[0]),
'text': roi_ocr[1][0],
'score': round(float(roi_score), 2)
})
return result


image_text = ImageText()
Binary file added dbnet_crnn/modelv1.1/det/model
Binary file not shown.
Binary file added dbnet_crnn/modelv1.1/det/params
Binary file not shown.
Binary file added dbnet_crnn/modelv1.1/rec/model
Binary file not shown.
Binary file added dbnet_crnn/modelv1.1/rec/params
Binary file not shown.
134 changes: 134 additions & 0 deletions dbnet_crnn/ppocr/db_post_process.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
import numpy as np
import cv2
from shapely.geometry import Polygon
import pyclipper


class DBPostProcess(object):
"""
The post process for Differentiable Binarization (DB).
"""

def __init__(self, params):
self.thresh = params['thresh']
self.box_thresh = params['box_thresh']
self.max_candidates = params['max_candidates']
self.unclip_ratio = params['unclip_ratio']
self.min_size = 3

def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
'''
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
'''

bitmap = _bitmap
height, width = bitmap.shape

outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
if len(outs) == 3:
img, contours, _ = outs[0], outs[1], outs[2]
elif len(outs) == 2:
contours, _ = outs[0], outs[1]

num_contours = min(len(contours), self.max_candidates)
boxes = np.zeros((num_contours, 4, 2), dtype=np.int16)
scores = np.zeros((num_contours, ), dtype=np.float32)

for index in range(num_contours):
contour = contours[index]
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
score = self.box_score_fast(pred, points.reshape(-1, 2))
if self.box_thresh > score:
continue

box = self.unclip(points).reshape(-1, 1, 2)
box, sside = self.get_mini_boxes(box)
if sside < self.min_size + 2:
continue
box = np.array(box)
if not isinstance(dest_width, int):
dest_width = dest_width.item()
dest_height = dest_height.item()

box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes[index, :, :] = box.astype(np.int16)
scores[index] = score
return boxes, scores

def unclip(self, box):
unclip_ratio = self.unclip_ratio
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded

def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2

box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box, min(bounding_box[1])

def box_score_fast(self, bitmap, _box):
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

def __call__(self, outs_dict, ratio_list):
pred = outs_dict['maps']

pred = pred[:, 0, :, :]
segmentation = pred > self.thresh

boxes_batch = []
for batch_index in range(pred.shape[0]):
height, width = pred.shape[-2:]
tmp_boxes, tmp_scores = self.boxes_from_bitmap(pred[batch_index],
segmentation[batch_index],
width, height)
boxes = []
for k in range(len(tmp_boxes)):
if tmp_scores[k] > self.box_thresh:
boxes.append(tmp_boxes[k])
if len(boxes) > 0:
boxes = np.array(boxes)

ratio_h, ratio_w = ratio_list[batch_index]
boxes[:, :, 0] = boxes[:, :, 0] / ratio_w
boxes[:, :, 1] = boxes[:, :, 1] / ratio_h

boxes_batch.append(boxes)
return boxes_batch
Loading

0 comments on commit 87aeede

Please sign in to comment.