forked from open-mmlab/mmdetection3d
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Feature] Spvcnn backbone (open-mmlab#2320)
* add cylindrical voxelization & voxel feature encoder * add cylindrical voxelization & voxel feature encoder * add voxel-wise label & voxelization UT * fix vfe * fix vfe UT * rename voxel encoder & add more test case * fix type hint * temporarily refactoring mmcv's voxelize and dynamic in mmdet3d for data_preprocesser * _forward * del checkpoints * add if tp * add predict * fix vfe init bug & fix UT * add grid_size & move voxelization code * fix import bug * keep radian to follow origin * add doc string * fix type hint * add minkunet voxelization and loss function * fix data * init train * fix sparsetensor typehint * rename dir * fix data config * fix data config * fix batch_size & replace dynamic_scatter * fix conflicts 2 * fix conflicts on s_70 * Alignment of the original implementation * rename config * add worker_init_fn_hook * remove test_config & worker hook * add UT * fix polarmix UT * init spcvnn backbone * add seed for cr0p5 * spvcnn_init * format * rename SemanticKittiDataset * add platte & fix visual bug * add platte & fix data info bug * fix ut * fix ut * fix semantic_kitti ut * train init * fix docstring * fix config name * rename layer * fix doc string * fix review * remove filter data * rename config * rename backbone * rename backbone 2 * refactor voxel2point * fix coors typo * fix ut * fix ut * pred in segmentor * fix get voxel seg * resolve comments * rename p2v and v2p * rename points and voxels
- Loading branch information
1 parent
f4b0174
commit 98d2642
Showing
7 changed files
with
374 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
model = dict( | ||
type='MinkUNet', | ||
data_preprocessor=dict( | ||
type='Det3DDataPreprocessor', | ||
voxel=True, | ||
voxel_type='minkunet', | ||
voxel_layer=dict( | ||
max_num_points=-1, | ||
point_cloud_range=[-100, -100, -20, 100, 100, 20], | ||
voxel_size=[0.05, 0.05, 0.05], | ||
max_voxels=(-1, -1)), | ||
), | ||
backbone=dict( | ||
type='SPVCNNBackbone', | ||
in_channels=4, | ||
base_channels=32, | ||
encoder_channels=[32, 64, 128, 256], | ||
decoder_channels=[256, 128, 96, 96], | ||
num_stages=4, | ||
drop_ratio=0.3), | ||
decode_head=dict( | ||
type='MinkUNetHead', | ||
channels=96, | ||
num_classes=19, | ||
dropout_ratio=0, | ||
loss_decode=dict(type='mmdet.CrossEntropyLoss', avg_non_ignore=True), | ||
ignore_index=19), | ||
train_cfg=dict(), | ||
test_cfg=dict()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
_base_ = ['./spvcnn_w32_8xb2-15e_semantickitti.py'] | ||
|
||
model = dict( | ||
backbone=dict( | ||
base_channels=16, | ||
encoder_channels=[16, 32, 64, 128], | ||
decoder_channels=[128, 64, 48, 48]), | ||
decode_head=dict(channels=48)) | ||
|
||
randomness = dict(seed=1588147245) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
_base_ = ['./spvcnn_w32_8xb2-15e_semantickitti.py'] | ||
|
||
model = dict( | ||
backbone=dict( | ||
base_channels=20, | ||
encoder_channels=[20, 40, 81, 163], | ||
decoder_channels=[163, 81, 61, 61]), | ||
decode_head=dict(channels=61)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
_base_ = [ | ||
'../_base_/datasets/semantickitti.py', '../_base_/models/spvcnn.py', | ||
'../_base_/default_runtime.py' | ||
] | ||
|
||
train_pipeline = [ | ||
dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), | ||
dict( | ||
type='LoadAnnotations3D', | ||
with_bbox_3d=False, | ||
with_label_3d=False, | ||
with_seg_3d=True, | ||
seg_3d_dtype='np.int32', | ||
seg_offset=2**16, | ||
dataset_type='semantickitti'), | ||
dict(type='PointSegClassMapping'), | ||
dict( | ||
type='GlobalRotScaleTrans', | ||
rot_range=[0., 6.28318531], | ||
scale_ratio_range=[0.95, 1.05], | ||
translation_std=[0, 0, 0], | ||
), | ||
dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask']) | ||
] | ||
|
||
train_dataloader = dict( | ||
sampler=dict(seed=0), dataset=dict(dataset=dict(pipeline=train_pipeline))) | ||
|
||
lr = 0.24 | ||
optim_wrapper = dict( | ||
type='AmpOptimWrapper', | ||
loss_scale='dynamic', | ||
optimizer=dict( | ||
type='SGD', lr=lr, weight_decay=0.0001, momentum=0.9, nesterov=True)) | ||
|
||
param_scheduler = [ | ||
dict( | ||
type='LinearLR', start_factor=0.008, by_epoch=False, begin=0, end=125), | ||
dict( | ||
type='CosineAnnealingLR', | ||
begin=0, | ||
T_max=15, | ||
by_epoch=True, | ||
eta_min=1e-5, | ||
convert_to_iter_based=True) | ||
] | ||
|
||
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=15, val_interval=1) | ||
val_cfg = dict(type='ValLoop') | ||
test_cfg = dict(type='TestLoop') | ||
|
||
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=1)) | ||
randomness = dict(seed=0, deterministic=False, diff_rank_seed=True) | ||
env_cfg = dict(cudnn_benchmark=True) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,237 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
from typing import Optional, Sequence | ||
|
||
import torch | ||
from mmengine.registry import MODELS | ||
from torch import Tensor, nn | ||
|
||
from mmdet3d.models.layers.torchsparse import IS_TORCHSPARSE_AVAILABLE | ||
from mmdet3d.utils import OptMultiConfig | ||
from .minkunet_backbone import MinkUNetBackbone | ||
|
||
if IS_TORCHSPARSE_AVAILABLE: | ||
import torchsparse | ||
import torchsparse.nn.functional as F | ||
from torchsparse.nn.utils import get_kernel_offsets | ||
from torchsparse.tensor import PointTensor, SparseTensor | ||
else: | ||
PointTensor = SparseTensor = None | ||
|
||
|
||
@MODELS.register_module() | ||
class SPVCNNBackbone(MinkUNetBackbone): | ||
"""SPVCNN backbone with torchsparse backend. | ||
More details can be found in `paper <https://arxiv.org/abs/2007.16100>`_ . | ||
Args: | ||
in_channels (int): Number of input voxel feature channels. | ||
Defaults to 4. | ||
base_channels (int): The input channels for first encoder layer. | ||
Defaults to 32. | ||
encoder_channels (List[int]): Convolutional channels of each encode | ||
layer. Defaults to [32, 64, 128, 256]. | ||
decoder_channels (List[int]): Convolutional channels of each decode | ||
layer. Defaults to [256, 128, 96, 96]. | ||
num_stages (int): Number of stages in encoder and decoder. | ||
Defaults to 4. | ||
drop_ratio (float): Dropout ratio of voxel features. Defaults to 0.3. | ||
init_cfg (dict or :obj:`ConfigDict` or list[dict or :obj:`ConfigDict`] | ||
, optional): Initialization config dict. Defaults to None. | ||
""" | ||
|
||
def __init__(self, | ||
in_channels: int = 4, | ||
base_channels: int = 32, | ||
encoder_channels: Sequence[int] = [32, 64, 128, 256], | ||
decoder_channels: Sequence[int] = [256, 128, 96, 96], | ||
num_stages: int = 4, | ||
drop_ratio: float = 0.3, | ||
init_cfg: OptMultiConfig = None) -> None: | ||
super().__init__( | ||
in_channels=in_channels, | ||
base_channels=base_channels, | ||
encoder_channels=encoder_channels, | ||
decoder_channels=decoder_channels, | ||
num_stages=num_stages, | ||
init_cfg=init_cfg) | ||
|
||
self.point_transforms = nn.ModuleList([ | ||
nn.Sequential( | ||
nn.Linear(base_channels, encoder_channels[-1]), | ||
nn.BatchNorm1d(encoder_channels[-1]), nn.ReLU(True)), | ||
nn.Sequential( | ||
nn.Linear(encoder_channels[-1], decoder_channels[2]), | ||
nn.BatchNorm1d(decoder_channels[2]), nn.ReLU(True)), | ||
nn.Sequential( | ||
nn.Linear(decoder_channels[2], decoder_channels[4]), | ||
nn.BatchNorm1d(decoder_channels[4]), nn.ReLU(True)) | ||
]) | ||
self.dropout = nn.Dropout(drop_ratio, True) | ||
|
||
def forward(self, voxel_features: Tensor, coors: Tensor) -> PointTensor: | ||
"""Forward function. | ||
Args: | ||
voxel_features (Tensor): Voxel features in shape (N, C). | ||
coors (Tensor): Coordinates in shape (N, 4), | ||
the columns in the order of (x_idx, y_idx, z_idx, batch_idx). | ||
Returns: | ||
PointTensor: Backbone features. | ||
""" | ||
voxels = SparseTensor(voxel_features, coors) | ||
points = PointTensor(voxels.F, voxels.C.float()) | ||
voxels = self.initial_voxelize(points) | ||
|
||
voxels = self.conv_input(voxels) | ||
points = self.voxel_to_point(voxels, points) | ||
voxels = self.point_to_voxel(voxels, points) | ||
laterals = [voxels] | ||
for encoder in self.encoder: | ||
voxels = encoder(voxels) | ||
laterals.append(voxels) | ||
laterals = laterals[:-1][::-1] | ||
|
||
points = self.voxel_to_point(voxels, points, self.point_transforms[0]) | ||
voxels = self.point_to_voxel(voxels, points) | ||
voxels.F = self.dropout(voxels.F) | ||
|
||
decoder_outs = [] | ||
for i, decoder in enumerate(self.decoder): | ||
voxels = decoder[0](voxels) | ||
voxels = torchsparse.cat((voxels, laterals[i])) | ||
voxels = decoder[1](voxels) | ||
decoder_outs.append(voxels) | ||
if i == 1: | ||
points = self.voxel_to_point(voxels, points, | ||
self.point_transforms[1]) | ||
voxels = self.point_to_voxel(voxels, points) | ||
voxels.F = self.dropout(voxels.F) | ||
|
||
points = self.voxel_to_point(voxels, points, self.point_transforms[2]) | ||
return points | ||
|
||
def initial_voxelize(self, points: PointTensor) -> SparseTensor: | ||
"""Voxelization again based on input PointTensor. | ||
Args: | ||
points (PointTensor): Input points after voxelization. | ||
Returns: | ||
SparseTensor: New voxels. | ||
""" | ||
pc_hash = F.sphash(torch.floor(points.C).int()) | ||
sparse_hash = torch.unique(pc_hash) | ||
idx_query = F.sphashquery(pc_hash, sparse_hash) | ||
counts = F.spcount(idx_query.int(), len(sparse_hash)) | ||
|
||
inserted_coords = F.spvoxelize( | ||
torch.floor(points.C), idx_query, counts) | ||
inserted_coords = torch.round(inserted_coords).int() | ||
inserted_feat = F.spvoxelize(points.F, idx_query, counts) | ||
|
||
new_tensor = SparseTensor(inserted_feat, inserted_coords, 1) | ||
new_tensor.cmaps.setdefault(new_tensor.stride, new_tensor.coords) | ||
points.additional_features['idx_query'][1] = idx_query | ||
points.additional_features['counts'][1] = counts | ||
return new_tensor | ||
|
||
def voxel_to_point(self, | ||
voxels: SparseTensor, | ||
points: PointTensor, | ||
point_transform: Optional[nn.Module] = None, | ||
nearest: bool = False) -> PointTensor: | ||
"""Feed voxel features to points. | ||
Args: | ||
voxels (SparseTensor): Input voxels. | ||
points (PointTensor): Input points. | ||
point_transform (nn.Module, optional): Point transform module | ||
for input point features. Defaults to None. | ||
nearest (bool): Whether to use nearest neighbor interpolation. | ||
Defaults to False. | ||
Returns: | ||
PointTensor: Points with new features. | ||
""" | ||
if points.idx_query is None or points.weights is None or \ | ||
points.idx_query.get(voxels.s) is None or \ | ||
points.weights.get(voxels.s) is None: | ||
offsets = get_kernel_offsets( | ||
2, voxels.s, 1, device=points.F.device) | ||
old_hash = F.sphash( | ||
torch.cat([ | ||
torch.floor(points.C[:, :3] / voxels.s[0]).int() * | ||
voxels.s[0], points.C[:, -1].int().view(-1, 1) | ||
], 1), offsets) | ||
pc_hash = F.sphash(voxels.C.to(points.F.device)) | ||
idx_query = F.sphashquery(old_hash, pc_hash) | ||
weights = F.calc_ti_weights( | ||
points.C, idx_query, | ||
scale=voxels.s[0]).transpose(0, 1).contiguous() | ||
idx_query = idx_query.transpose(0, 1).contiguous() | ||
if nearest: | ||
weights[:, 1:] = 0. | ||
idx_query[:, 1:] = -1 | ||
new_features = F.spdevoxelize(voxels.F, idx_query, weights) | ||
new_tensor = PointTensor( | ||
new_features, | ||
points.C, | ||
idx_query=points.idx_query, | ||
weights=points.weights) | ||
new_tensor.additional_features = points.additional_features | ||
new_tensor.idx_query[voxels.s] = idx_query | ||
new_tensor.weights[voxels.s] = weights | ||
points.idx_query[voxels.s] = idx_query | ||
points.weights[voxels.s] = weights | ||
else: | ||
new_features = F.spdevoxelize(voxels.F, | ||
points.idx_query.get(voxels.s), | ||
points.weights.get(voxels.s)) | ||
new_tensor = PointTensor( | ||
new_features, | ||
points.C, | ||
idx_query=points.idx_query, | ||
weights=points.weights) | ||
new_tensor.additional_features = points.additional_features | ||
|
||
if point_transform is not None: | ||
new_tensor.F = new_tensor.F + point_transform(points.F) | ||
|
||
return new_tensor | ||
|
||
def point_to_voxel(self, voxels: SparseTensor, | ||
points: PointTensor) -> SparseTensor: | ||
"""Feed point features to voxels. | ||
Args: | ||
voxels (SparseTensor): Input voxels. | ||
points (PointTensor): Input points. | ||
Returns: | ||
SparseTensor: Voxels with new features. | ||
""" | ||
if points.additional_features is None or \ | ||
points.additional_features.get('idx_query') is None or \ | ||
points.additional_features['idx_query'].get(voxels.s) is None: | ||
pc_hash = F.sphash( | ||
torch.cat([ | ||
torch.floor(points.C[:, :3] / voxels.s[0]).int() * | ||
voxels.s[0], points.C[:, -1].int().view(-1, 1) | ||
], 1)) | ||
sparse_hash = F.sphash(voxels.C) | ||
idx_query = F.sphashquery(pc_hash, sparse_hash) | ||
counts = F.spcount(idx_query.int(), voxels.C.shape[0]) | ||
points.additional_features['idx_query'][voxels.s] = idx_query | ||
points.additional_features['counts'][voxels.s] = counts | ||
else: | ||
idx_query = points.additional_features['idx_query'][voxels.s] | ||
counts = points.additional_features['counts'][voxels.s] | ||
|
||
inserted_features = F.spvoxelize(points.F, idx_query, counts) | ||
new_tensor = SparseTensor(inserted_features, voxels.C, voxels.s) | ||
new_tensor.cmaps = voxels.cmaps | ||
new_tensor.kmaps = voxels.kmaps | ||
|
||
return new_tensor |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import pytest | ||
import torch | ||
import torch.nn.functional as F | ||
|
||
from mmdet3d.registry import MODELS | ||
|
||
|
||
def test_spvcnn_backbone(): | ||
if not torch.cuda.is_available(): | ||
pytest.skip('test requires GPU and torch+cuda') | ||
|
||
try: | ||
import torchsparse # noqa: F401 | ||
except ImportError: | ||
pytest.skip('test requires Torchsparse installation') | ||
|
||
coordinates, features = [], [] | ||
for i in range(2): | ||
c = torch.randint(0, 10, (100, 3)).int() | ||
c = F.pad(c, (0, 1), mode='constant', value=i) | ||
coordinates.append(c) | ||
f = torch.rand(100, 4) | ||
features.append(f) | ||
features = torch.cat(features, dim=0).cuda() | ||
coordinates = torch.cat(coordinates, dim=0).cuda() | ||
|
||
cfg = dict(type='SPVCNNBackbone') | ||
self = MODELS.build(cfg).cuda() | ||
self.init_weights() | ||
|
||
y = self(features, coordinates) | ||
assert y.F.shape == torch.Size([200, 96]) | ||
assert y.C.shape == torch.Size([200, 4]) |