Skip to content

MariaDB/mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MCP MariaDB Server

The MCP MariaDB Server provides a Model Context Protocol (MCP) interface for managing and querying MariaDB databases, supporting both standard SQL operations and advanced vector/embedding-based search. Designed for use with AI assistants, it enables seamless integration of AI-driven data workflows with relational and vector databases.


Table of Contents


Overview

The MCP MariaDB Server exposes a set of tools for interacting with MariaDB databases and vector stores via a standardized protocol. It supports:

  • Listing databases and tables
  • Retrieving table schemas
  • Executing safe, read-only SQL queries
  • Creating and managing vector stores for embedding-based search
  • Integrating with embedding providers (currently OpenAI, Gemini, and HuggingFace)

Core Components

  • server.py: Main MCP server logic and tool definitions.
  • config.py: Loads configuration from environment and .env files.
  • embeddings.py: Handles embedding service integration (OpenAI).
  • tests/: Manual and automated test documentation and scripts.

Available Tools

Standard Database Tools

  • list_databases

    • Lists all accessible databases.
    • Parameters: None
  • list_tables

    • Lists all tables in a specified database.
    • Parameters: database_name (string, required)
  • get_table_schema

    • Retrieves schema for a table (columns, types, keys, etc.).
    • Parameters: database_name (string, required), table_name (string, required)
  • execute_sql

    • Executes a read-only SQL query (SELECT, SHOW, DESCRIBE).
    • Parameters: sql_query (string, required), database_name (string, optional), parameters (list, optional)
    • Note: Enforces read-only mode if MCP_READ_ONLY is enabled.
  • create_database

    • Creates a new database if it doesn't exist.
    • Parameters: database_name (string, required)

Vector Store & Embedding Tools

  • create_vector_store

    • Creates a new vector store (table) for embeddings.
    • Parameters: database_name, vector_store_name, model_name (optional), distance_function (optional, default: cosine)
  • delete_vector_store

    • Deletes a vector store (table).
    • Parameters: database_name, vector_store_name
  • list_vector_stores

    • Lists all vector stores in a database.
    • Parameters: database_name
  • insert_docs_vector_store

    • Batch inserts documents (and optional metadata) into a vector store.
    • Parameters: database_name, vector_store_name, documents (list of strings), metadata (optional list of dicts)
  • search_vector_store

    • Performs semantic search for similar documents using embeddings.
    • Parameters: database_name, vector_store_name, user_query (string), k (optional, default: 7)

Embeddings & Vector Store

Supported Providers

  • OpenAI
  • Gemini
  • Open models from Huggingface

Configuration

  • EMBEDDING_PROVIDER: Set to openai (default option), can change it to required providers
  • OPENAI_API_KEY: Required if using OpenAI embeddings
  • GEMINI_API_KEY`: Required if using Gemini embeddings
  • Open models from HUGGINGFACE: Required open model currently provided option for "intfloat/multilingual-e5-large-instruct" & "BAAI/bge-m3"

Model Selection

  • Default and allowed models are configurable in code (DEFAULT_OPENAI_MODEL, ALLOWED_OPENAI_MODELS)
  • Model can be selected per request or defaults to the configured model

Vector Store Schema

A vector store table has the following columns:

  • id: Auto-increment primary key
  • document: Text of the document
  • embedding: VECTOR type (indexed for similarity search)
  • metadata: JSON (optional metadata)

Configuration & Environment Variables

All configuration is via environment variables (typically set in a .env file):

Variable Description Required Default
DB_HOST MariaDB host address Yes localhost
DB_PORT MariaDB port No 3306
DB_USER MariaDB username Yes
DB_PASSWORD MariaDB password Yes
DB_NAME Default database (optional; can be set per query) No
MCP_READ_ONLY Enforce read-only SQL mode (true/false) No true
MCP_MAX_POOL_SIZE Max DB connection pool size No 10
EMBEDDING_PROVIDER Embedding provider (openai/gemini/huggingface) No openai
OPENAI_API_KEY API key for OpenAI embeddings Yes (if using embeddings)
GEMINII_API_KEY API key for Gemini embeddings Yes (if using embeddings)
HF_MODEL Open models from Huggingface Yes (if using embeddings)

Example .env file

DB_HOST=localhost
DB_USER=your_db_user
DB_PASSWORD=your_db_password
DB_PORT=3306
DB_NAME=your_default_database

MCP_READ_ONLY=true
MCP_MAX_POOL_SIZE=10

EMBEDDING_PROVIDER=openai
OPENAI_API_KEY=sk-...
GEMINI_API_KEY=AI...
HF_MODEL="BAAI/bge-m3"

Installation & Setup

Requirements

  • Python 3.11 (see .python-version)
  • uv (dependency manager; install instructions)
  • MariaDB server (local or remote)

Steps

  1. Clone the repository
  2. Install uv (if not already):
    pip install uv
  3. Install dependencies
    uv pip sync
  4. Create .env in the project root (see Configuration)
  5. Run the server
    python server.py
    Adjust entry point if needed (e.g., main.py)

Usage Examples

Standard SQL Query

{
  "tool": "execute_sql",
  "parameters": {
    "database_name": "test_db",
    "sql_query": "SELECT * FROM users WHERE id = %s",
    "parameters": [123]
  }
}

Create Vector Store

{
  "tool": "create_vector_store",
  "parameters": {
    "database_name": "test_db",
    "vector_store_name": "my_vectors",
    "model_name": "text-embedding-3-small",
    "distance_function": "cosine"
  }
}

Insert Documents into Vector Store

{
  "tool": "insert_docs_vector_store",
  "parameters": {
    "database_name": "test_db",
    "vector_store_name": "my_vectors",
    "documents": ["Sample text 1", "Sample text 2"],
    "metadata": [{"source": "doc1"}, {"source": "doc2"}]
  }
}

Semantic Search

{
  "tool": "search_vector_store",
  "parameters": {
    "database_name": "test_db",
    "vector_store_name": "my_vectors",
    "user_query": "What is the capital of France?",
    "k": 5
  }
}

Integration - Claude desktop/Cursor/Windsurf

{
  "mcpServers": {
    "MariaDB_Server": {
      "command": "uv",
      "args": [
        "--directory",
        "path/to/mariadb-mcp-server/",
        "run",
        "server.py"
        ],
        "envFile": "path/to/mcp-server-mariadb-vector/.env"      
    }
  }
}

Logging

  • Logs are written to logs/mcp_server.log by default.
  • Log messages include tool calls, configuration issues, embedding errors, and client requests.
  • Log level and output can be adjusted in the code (see config.py and logger setup).

Testing

  • Tests are located in the src/tests/ directory.
  • See src/tests/README.md for an overview.
  • Tests cover both standard SQL and vector/embedding tool operations.

About

MariaDB MCP (Model Context Protocol) server implementation

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •