Skip to content

METACOGNITIVE/AgentPrune

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AgentPrune

Overview

1727697173615

AgentPrune is an economical, simple, and robust multi-agent communication framework, which can seamlessly integrate into mainstream multi-agent systems and prunes redundant or even malicious communication messages.

We provide the code of our paper. The algorithm implementation code is in AgentPrune folder, and the experimental code is in experiments folder.

Quick Start

Install packages

conda create -n agentprune python=3.10
conda activate agentprune
pip install -r requirements.txt

Add API keys in template.env and change its name to .env

BASE_URL = "" # the BASE_URL of OpenAI LLM backend
API_KEY = "" # for OpenAI LLM backend

Download Datasets

Download MMLU, HumanEval and GSM8K datasets from MMLU, HumanEval and GSM8K. And put them in different folders.

Run AgentPrune on MMLU by running the following scripts

python experiments/run_mmlu.py --agent_nums 1 --mode DirectAnswer --decision_method FinalMajorVote --agent_names AdverarialAgent --batch_size 4
python experiments/run_mmlu.py --agent_nums 6 --mode FakeChain --decision_method FinalMajorVote --agent_names AdverarialAgent --batch_size 4
python experiments/run_mmlu.py --agent_nums 6 --mode FakeRandom --decision_method FinalMajorVote --agent_names AdverarialAgent --batch_size 4
python experiments/run_mmlu.py --agent_nums 6 --mode FakeAGFull --batch_size 4 --num_iterations 10 --imp_per_iterations 5 --pruning_rate 0.25 --num_rounds 1 --optimized_spatial --optimized_temporal

The above code verifies the experimental results of the mmlu dataset under different topologies.

We also provide experimental code for other datasets and topologies.You can refer to experiments/run_humaneval.py and experiments/run_gsm8k.py.

Acknowledgement

This code refers to GPTSwarm.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%