Sparsely Aggregated Convolutional Networks [PDF]
Ligeng Zhu, Ruizhi Deng, Michael Maire, Zhiwei Deng, Greg Mori, Ping Tan
SparseNet is a network architecture that only aggregates previous layers with exponential offset, for example, i - 1, i - 2, i - 4, i - 8, i - 16 ...
The connectivity pattern yields state-of-the-art arruacies on small dataset CIFAR/10/100. On large scale ILSVRC 2012 (ImageNet) dataset, SparseNet achieves similar accuracy as ResNet and DenseNet, while only using much less parameters.
Without BC | With BC | ||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
|
-
Paramter efficiency on ImageNet
We notice sparsenet shows comparable efficiency even compared with pruned models.
Refer for source folder.
If SparseNet helps your research, please cite our work :)
@article{DBLP:journals/corr/abs-1801-05895,
author = {Ligeng Zhu and
Ruizhi Deng and
Michael Maire and
Zhiwei Deng and
Greg Mori and
Ping Tan},
title = {Sparsely Aggregated Convolutional Networks},
journal = {CoRR},
volume = {abs/1801.05895},
year = {2018},
url = {http://arxiv.org/abs/1801.05895},
archivePrefix = {arXiv},
eprint = {1801.05895},
biburl = {https://dblp.org/rec/bib/journals/corr/abs-1801-05895},
bibsource = {dblp computer science bibliography, https://dblp.org}
}