Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: update ConvMixer to support reactant #1063

Merged
merged 12 commits into from
Jan 1, 2025
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "Lux"
uuid = "b2108857-7c20-44ae-9111-449ecde12c47"
authors = ["Avik Pal <[email protected]> and contributors"]
version = "1.4.3"
version = "1.4.4"

[deps]
ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b"
Expand Down
2 changes: 1 addition & 1 deletion docs/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ Optimisers = "0.4.1"
Pkg = "1.10"
Printf = "1.10"
Random = "1.10"
Reactant = "0.2.12"
Reactant = "0.2.11"
StableRNGs = "1"
StaticArrays = "1"
WeightInitializers = "1"
Expand Down
4 changes: 2 additions & 2 deletions docs/src/.vitepress/config.mts
Original file line number Diff line number Diff line change
Expand Up @@ -243,8 +243,8 @@ export default defineConfig({
link: "https://github.com/LuxDL/Lux.jl/tree/main/examples/DDIM",
},
{
text: "ConvMixer on CIFAR-10",
link: "https://github.com/LuxDL/Lux.jl/tree/main/examples/ConvMixer",
text: "Different Vision Models on CIFAR-10",
link: "https://github.com/LuxDL/Lux.jl/tree/main/examples/CIFAR10",
},
],
},
Expand Down
6 changes: 3 additions & 3 deletions docs/src/tutorials/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -97,10 +97,10 @@ const large_models = [
desc: "Train a Diffusion Model to generate images from Gaussian noises."
},
{
href: "https://github.com/LuxDL/Lux.jl/tree/main/examples/ConvMixer",
href: "https://github.com/LuxDL/Lux.jl/tree/main/examples/CIFAR10",
src: "https://datasets.activeloop.ai/wp-content/uploads/2022/09/CIFAR-10-dataset-Activeloop-Platform-visualization-image-1.webp",
caption: "ConvMixer on CIFAR-10",
desc: "Train ConvMixer on CIFAR-10 to 90% accuracy within 10 minutes."
caption: "Vision Models on CIFAR-10",
desc: "Train different vision models on CIFAR-10 to 90% accuracy within 10 minutes."
}
];
Expand Down
Original file line number Diff line number Diff line change
@@ -1,7 +1,9 @@
[deps]
BFloat16s = "ab4f0b2a-ad5b-11e8-123f-65d77653426b"
Comonicon = "863f3e99-da2a-4334-8734-de3dacbe5542"
ConcreteStructs = "2569d6c7-a4a2-43d3-a901-331e8e4be471"
DataAugmentation = "88a5189c-e7ff-4f85-ac6b-e6158070f02e"
Enzyme = "7da242da-08ed-463a-9acd-ee780be4f1d9"
ImageCore = "a09fc81d-aa75-5fe9-8630-4744c3626534"
ImageShow = "4e3cecfd-b093-5904-9786-8bbb286a6a31"
Interpolations = "a98d9a8b-a2ab-59e6-89dd-64a1c18fca59"
Expand All @@ -11,18 +13,20 @@ MLDatasets = "eb30cadb-4394-5ae3-aed4-317e484a6458"
MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54"
OneHotArrays = "0b1bfda6-eb8a-41d2-88d8-f5af5cad476f"
Optimisers = "3bd65402-5787-11e9-1adc-39752487f4e2"
PreferenceTools = "ba661fbb-e901-4445-b070-854aec6bfbc5"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
ProgressBars = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
ProgressTables = "e0b4b9f6-8cc7-451e-9c86-94c5316e9f73"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Reactant = "3c362404-f566-11ee-1572-e11a4b42c853"
StableRNGs = "860ef19b-820b-49d6-a774-d7a799459cd3"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[compat]
BFloat16s = "0.5.0"
Comonicon = "1.0.8"
ConcreteStructs = "0.2.3"
DataAugmentation = "0.3"
Enzyme = "0.13.14"
ImageCore = "0.10.2"
ImageShow = "0.3.8"
Interpolations = "0.15.1"
Expand All @@ -32,10 +36,9 @@ MLDatasets = "0.7.14"
MLUtils = "0.4.4"
OneHotArrays = "0.2.5"
Optimisers = "0.4.1"
PreferenceTools = "0.1.2"
Printf = "1.10"
ProgressBars = "1.5.1"
Random = "1.10"
Reactant = "0.2.12"
StableRNGs = "1.0.2"
Statistics = "1.10"
Zygote = "0.6.70"
69 changes: 69 additions & 0 deletions examples/CIFAR10/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
# Train Vision Models on CIFAR-10

✈️ 🚗 🐦 🐈 🦌 🐕 🐸 🐎 🚢 🚚

We have the following scripts to train vision models on CIFAR-10:

1. `simple_cnn.jl`: Simple CNN model with a sequence of convolutional layers.
2. `mlp_mixer.jl`: MLP-Mixer model.
3. `conv_mixer.jl`: ConvMixer model.

To get the options for each script, run the script with the `--help` flag.

> [!NOTE]
> To train the model using Reactant.jl pass in `--backend=reactant` to the script. This is
> the recommended approach to train the models present in this directory.

> [!NOTE]
> Passing `--bfloat16` will use BFloat16 precision for training. This needs Julia 1.11 or
> above.

## Simple CNN

```bash
julia --startup-file=no \
--project=. \
--threads=auto \
simple_cnn.jl \
--backend=reactant
```

On a RTX 4050 6GB Laptop GPU the training takes approximately 3 mins and the final training
and test accuracies are 97% and 65%, respectively.

## ResNet 20

```bash
julia --startup-file=no \
--project=. \
--threads=auto \
resnet20.jl \
--backend=reactant
```

On a RTX 3060 GPU, each epoch takes about 4.5 seconds and the final training and testing
accuracy are 89% and 75% respectively.

## ConvMixer

> [!NOTE]
> This code has been adapted from https://github.com/locuslab/convmixer-cifar10

This is a simple ConvMixer training script for CIFAR-10. It's probably a good starting point
for new experiments on small datasets.

You can get around **90.0%** accuracy in just **25 epochs** by running the script with the
following arguments, which trains a ConvMixer-256/8 with kernel size 5 and patch size 2.

```bash
julia --startup-file=no \
--project=. \
--threads=auto \
conv_mixer.jl \
--backend=reactant
```

### Notes

1. To match the results from the original repo, we need more augmentation strategies, that
are currently not implemented in DataAugmentation.jl.
146 changes: 146 additions & 0 deletions examples/CIFAR10/common.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,146 @@
using ConcreteStructs, DataAugmentation, ImageShow, Lux, MLDatasets, MLUtils, OneHotArrays,
Printf, ProgressTables, Random, BFloat16s
using Reactant, LuxCUDA

@concrete struct TensorDataset
dataset
transform
end

Base.length(ds::TensorDataset) = length(ds.dataset)

function Base.getindex(ds::TensorDataset, idxs::Union{Vector{<:Integer}, AbstractRange})
img = Image.(eachslice(convert2image(ds.dataset, idxs); dims=3))
y = onehotbatch(ds.dataset.targets[idxs], 0:9)
return stack(parent itemdata Base.Fix1(apply, ds.transform), img), y
end

function get_cifar10_dataloaders(::Type{T}, batchsize; kwargs...) where {T}
cifar10_mean = (0.4914, 0.4822, 0.4465) .|> T
cifar10_std = (0.2471, 0.2435, 0.2616) .|> T

train_transform = RandomResizeCrop((32, 32)) |>
Maybe(FlipX{2}()) |>
ImageToTensor() |>
Normalize(cifar10_mean, cifar10_std) |>
ToEltype(T)

test_transform = ImageToTensor() |> Normalize(cifar10_mean, cifar10_std) |> ToEltype(T)

trainset = TensorDataset(CIFAR10(; Tx=T, split=:train), train_transform)
trainloader = DataLoader(trainset; batchsize, shuffle=true, kwargs...)

testset = TensorDataset(CIFAR10(; Tx=T, split=:test), test_transform)
testloader = DataLoader(testset; batchsize, shuffle=false, kwargs...)

return trainloader, testloader
end

function accuracy(model, ps, st, dataloader)
total_correct, total = 0, 0
cdev = cpu_device()
for (x, y) in dataloader
target_class = onecold(cdev(y))
predicted_class = onecold(cdev(first(model(x, ps, st))))
total_correct += sum(target_class .== predicted_class)
total += length(target_class)
end
return total_correct / total
end

function get_accelerator_device(backend::String)
if backend == "gpu_if_available"
return gpu_device()
elseif backend == "gpu"
return gpu_device(; force=true)
elseif backend == "reactant"
return reactant_device(; force=true)
elseif backend == "cpu"
return cpu_device()
else
error("Invalid backend: $(backend). Valid Options are: `gpu_if_available`, `gpu`, \
`reactant`, and `cpu`.")
end
end

function train_model(
model, opt, scheduler=nothing;
backend::String, batchsize::Int=512, seed::Int=1234, epochs::Int=25,
bfloat16::Bool=false
)
rng = Random.default_rng()
Random.seed!(rng, seed)

prec = bfloat16 ? bf16 : f32
prec_jl = bfloat16 ? BFloat16 : Float32
prec_str = bfloat16 ? "BFloat16" : "Float32"
@printf "[Info] Using %s precision\n" prec_str

accelerator_device = get_accelerator_device(backend)
kwargs = accelerator_device isa ReactantDevice ? (; partial=false) : ()
trainloader, testloader = get_cifar10_dataloaders(prec_jl, batchsize; kwargs...) |>
accelerator_device

ps, st = Lux.setup(rng, model) |> prec |> accelerator_device

train_state = Training.TrainState(model, ps, st, opt)

adtype = backend == "reactant" ? AutoEnzyme() : AutoZygote()

if backend == "reactant"
x_ra = rand(rng, prec_jl, size(first(trainloader)[1])) |> accelerator_device
@printf "[Info] Compiling model with Reactant.jl\n"
st_test = Lux.testmode(st)
model_compiled = Reactant.compile(model, (x_ra, ps, st_test))
@printf "[Info] Model compiled!\n"
else
model_compiled = model
end

loss_fn = CrossEntropyLoss(; logits=Val(true))

pt = ProgressTable(;
header=[
"Epoch", "Learning Rate", "Train Accuracy (%)", "Test Accuracy (%)", "Time (s)"
],
widths=[24, 24, 24, 24, 24],
format=["%3d", "%.6f", "%.6f", "%.6f", "%.6f"],
color=[:normal, :normal, :blue, :blue, :normal],
border=true,
alignment=[:center, :center, :center, :center, :center]
)

@printf "[Info] Training model\n"
initialize(pt)

for epoch in 1:epochs
stime = time()
lr = 0
for (i, (x, y)) in enumerate(trainloader)
if scheduler !== nothing
lr = scheduler((epoch - 1) + (i + 1) / length(trainloader))
train_state = Optimisers.adjust!(train_state, lr)
end
(_, loss, _, train_state) = Training.single_train_step!(
adtype, loss_fn, (x, y), train_state
)
isnan(loss) && error("NaN loss encountered!")
end
ttime = time() - stime

train_acc = accuracy(
model_compiled, train_state.parameters,
Lux.testmode(train_state.states), trainloader
) * 100
test_acc = accuracy(
model_compiled, train_state.parameters,
Lux.testmode(train_state.states), testloader
) * 100

scheduler === nothing && (lr = NaN32)
next(pt, [epoch, lr, train_acc, test_acc, ttime])
end

finalize(pt)
@printf "[Info] Finished training\n"
end
50 changes: 50 additions & 0 deletions examples/CIFAR10/conv_mixer.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
using Comonicon, Interpolations, Lux, Optimisers, Printf, Random, Statistics, Zygote

include("common.jl")

function ConvMixer(; dim, depth, kernel_size=5, patch_size=2)
#! format: off
return Chain(
Conv((patch_size, patch_size), 3 => dim, gelu; stride=patch_size),
BatchNorm(dim),
[
Chain(
SkipConnection(
Chain(
Conv(
(kernel_size, kernel_size), dim => dim, gelu;
groups=dim, pad=SamePad()
),
BatchNorm(dim)
),
+
),
Conv((1, 1), dim => dim, gelu),
BatchNorm(dim)
)
for _ in 1:depth
]...,
GlobalMeanPool(),
FlattenLayer(),
Dense(dim => 10)
)
#! format: on
end

Comonicon.@main function main(;
batchsize::Int=512, hidden_dim::Int=256, depth::Int=8,
patch_size::Int=2, kernel_size::Int=5, weight_decay::Float64=0.0001,
clip_norm::Bool=false, seed::Int=1234, epochs::Int=25, lr_max::Float64=0.05,
backend::String="reactant", bfloat16::Bool=false
)
model = ConvMixer(; dim=hidden_dim, depth, kernel_size, patch_size)

opt = AdamW(; eta=lr_max, lambda=weight_decay)
clip_norm && (opt = OptimiserChain(ClipNorm(), opt))

lr_schedule = linear_interpolation(
[0, epochs * 2 ÷ 5, epochs * 4 ÷ 5, epochs + 1], [0, lr_max, lr_max / 20, 0]
)

return train_model(model, opt, lr_schedule; backend, batchsize, seed, epochs, bfloat16)
end
Loading
Loading