Skip to content

The official codebase of Colorizing Monochromatic Radiance Fields (AAAI 2024)

Notifications You must be signed in to change notification settings

LiquidAmmonia/ColorNeRF

Repository files navigation

Colorizing Monochromatic Radiance Fields

This is the official codebase of Colorizing Monochromatic Radiance Fields (AAAI 2024). This paper was accepted as an Oral presentation paper (60 in 2342, 2.56%).

Quick start

Env setup

Create conda environment from env.yaml

conda create -f env.yaml

Note: some packages are not used in this demo.

Data preparation

We use LLFF dataset for training and testing. Please download the dataset from the official website.

For CT2 colorization, please download the ab-gamut.npy from CT2 under segm/resources/ab-gamut.npy and put it under private/ColorNeRF/models/segm/resources

Train

There are two training stages: (1) train a monochromatice NeRF model, and (2) train a colorized model.

# stage 1
CUDA_VISIBLE_DEVICES=$CUDA_IDS python train_color.py \
   --dataset_name hfai_llff_ref \
   --root_dir $LLFF_DIR \
   --N_importance 64 --img_wh 640 360 \
   --num_epochs 40 --batch_size 8192 \
   --optimizer adam --lr 5e-4 \
   --lr_scheduler steplr --decay_step 10 20 --decay_gamma 0.5 \
   --exp_name $exp_name \
   --loss_type color \
   --num_gpus 2 \
   --num_workers 32 \
   --not_use_patch \
   --normalize_illu \
   --local_run \
   --val_sanity_epoch 1
# stage 2
CUDA_VISIBLE_DEVICES=$CUDA_IDS python train_color.py \
   --dataset_name llff \
   --root_dir $LLFF_DIR \
   --weight_path ckpts/${exp_name}/last.ckpt \
   --N_importance 64 --img_wh 640 360 \
   --num_epochs 30 --batch_size 4096 \
   --optimizer adam --lr 5e-4 \
   --lr_scheduler steplr --decay_step 10 20 30 40 --decay_gamma 0.1 \
   --exp_name $stage2_exp_name \
   --loss_type color \
   --num_gpus 2 \
   --num_workers 64 \
   --use_patch \
   --teacher_model 'ct2' \
   --train_stage 2 \
   --patch_sample_method central \
   --local_run \
   --use_color_hist \
   --use_color_class_loss \
   --not_color_hist_force_accept \
   --color_hist_thres 0.90 \
   --chunk 8192 \
   --use_tv_loss 

You can refer to a comprehensive training and testing script in run.sh.

bash run.sh

Acknowledgement

The codebase of NeRF is derived from NeRF-SOS. We thank the authors for their great work.

The codebase of models/segm is derived from CT2 by @Shuchen Weng.

The codebase of models/lcoder is derived from L-CoDer by @Zheng Chang.

The codebase of models/zhang_color is derived from colorization by @Richard Zhang.

Citation

The paper bibtex is as follows

@inproceedings{cheng2024colornerf,
  author    = {Yean Cheng, Renjie Wan, Shuchen Weng, Chengxuan Zhu, Yakun Chang, Boxin Shi},
  title     = {Colorizing Monochromatic Radiance Fields},
  journal   = {AAAI},
  year      = {2024},
}

About

The official codebase of Colorizing Monochromatic Radiance Fields (AAAI 2024)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published