Skip to content

OCR to detect and recognize dot-matrix text written with inkjet-printed on medical PVC bag

Notifications You must be signed in to change notification settings

LeoPits/OCR-Dot-matrix-text

Repository files navigation

OCR-Dotted-Matrix

OCR to detect and recognize dot-matrix text written with inkjet-printed on medical PVC bag

Example images:

TEXT DETECTION wiht CRAFT (Character-Region Awareness For Text detection)

The code pre-processes images with the OpenCV function to improve text detection with CRAFT with (https://github.com/clovaai/CRAFT-pytorch/blob/master/README.md#craft-character-region-awareness-for-text-detection) The weights of pre-train network are available on this link https://drive.google.com/file/d/1Jk4eGD7crsqCCg9C9VjCLkMN3ze8kutZ/view. The recognize label is a string of the text, so the CRAFT parameters are set to find a unique block of text. it is possible to change --text_threshold,--low_text ,--link_threshold to have different detection results, but it is necessary to modify the label and recognition method after.

Craft results:

TEXT RECOGNITION with TESSERACT

The code extract the area around text on original image and fix the text oriention.

The cropped image:

Morphology Transformations (OpenCV function) and rescaling of chars with different parameters are applied to the cropped image.

Pre-process cropped image:

I use Tesseract OCR engine (https://tesseract-ocr.github.io/) with default page segmentation , the experiments show the LCDDot_FT_500.traineddata performs the best results in this case. Two methods are used to control the label:

  • SequenceMatcher is a class available in python module named difflib. It can be used for comparing pairs of input sequences. With the function ratio( ) returns the similarity score ( float in [0,1] ) between input strings. It sums the sizes of all matched sequences returned by function.
  • Regular expression is a class available in python module named re. The function re.match() checks for a match only at the beginning of the string.

Saving all result in json file:

        {
            "Name_original_file": "A_0.png",
            "Name_preprocess": "_preprocess_150.jpg",
            "check_label": "LOTTO:L21X45SCAD.:10-2023",
            "tesseract_LCDDot_FT_500_psm3_result": "LOTTO:L21X45SCAD.:10-2023",
            "LCDDot_FT_500_psm3_sequence_matcher_ratio_result": 1.0,
            "LCDDot_FT_500_psm3_bool_re_result": true
        }
    ],
    [
        {
            "Name_original_file": "A_0.png",
            "Name_preprocess": "_preprocess_160.jpg",
            "check_label": "LOTTO:L21X45SCAD.:10-2023",
            "tesseract_LCDDot_FT_500_psm3_result": "LOTTO:L21X4SCAD.:1625555",
            "LCDDot_FT_500_psm3_sequence_matcher_ratio_result": 0.78,
            "LCDDot_FT_500_psm3_bool_re_result": false
        }
    ],
    [
        {
            "Name_original_file": "A_0.png",
            "Name_preprocess": "_preprocess_170.jpg",
            "check_label": "LOTTO:L21X45SCAD.:10-2023",
            "tesseract_LCDDot_FT_500_psm3_result": "LOTTO:L21X45SCAD.:10-2023",
            "LCDDot_FT_500_psm3_sequence_matcher_ratio_result": 1.0,
            "LCDDot_FT_500_psm3_bool_re_result": true
        }

Getting started

Install dependencies

Requirements

  • PyTorch>=1.9.0
  • torchvision>=0.2.2
  • opencv-python>=4.5.2
conda env create -f environment.yml

Run script

python Test_Image.py  --image [folder path to test images]  --folder_res [folder path to save result images] --label [string label to check]

Arguments

  • --image: folder path to test images

  • --label: string label to check

  • --folder_res: folder path to save result images

  • --trained_model: pretrained model

  • --text_threshold: text confidence threshold

  • --low_text: text low-bound score

  • --link_threshold: link confidence threshold

  • --cuda: use cuda for inference (default:True)

  • --canvas_size: max image size for inference

  • --mag_ratio: image magnification ratio

  • --poly: enable polygon type result

  • --show_time: show processing time

  • --test_folder: folder path to input images

  • --refine: use link refiner for sentense-level dataset

  • --refiner_model: pretrained refiner model

About

OCR to detect and recognize dot-matrix text written with inkjet-printed on medical PVC bag

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages