-
Images Capturing Pipeline
- Images Capture with Augmentaion image_capture/capture_images.py
cap = Image_Capture(0) #camera device id ''' args : img_size : Capture image size (i.e 608x608) img_dir : Image Folder rotate90 : rotate image by 90 degree angle rotate180 : rotate image by 180 degree angle rotate270 : rotate image by 270 degree angle scale : Scale the image scale_val : Scale value of the image ''' cap.capture_image(img_size, img_dir, rotate90=True,rotate180=True,rotate270=True, scale=True,scale_val=0.2)
- Images Capture with Augmentaion image_capture/capture_images.py
-
Data Augmentaion Pipeline for Object Detection
- Data Augmentation For Object Detection
git clone [email protected]:LahiRumesh/Object-Detection_Data-Augmentation.git cd Object-Detection_Data-Augmentation/
- Data Augmentation For Object Detection
-
Data Prepare
- annotation file should be in vott csv format
image xmin ymin xmax ymax label image1.jpg 50 150 288 328 label1 image1.jpg 300 263 410 333 label2 image2.jpg 88 63 110 223 label1 image3.jpg 22 190 150 250 label3 -
Data Folder - >
-
image1.jpg image2.jpg image3.jpg annotation.csv
-
-
Use the train_models.py script to train YOLOv3 and YOLOv4 models
-
Training arguments for the model training.
-
--model : object detection model, i.e. YOLOv4 or YOLOv3
-
--data_dir : Image folder which contains images and the csv file
-
--weights : pre-trained weights path
-
--validation : validation data split
-
--epochs : number of training epochs
-
--batch_size : train and validation batch size
-
--image_size : train and test image size (should be multiply by 32 i.e (416,416),(512,512) or (608,608) )
-
--learning_rate: learning rate
-
--device : cuda device, i.e. 0 or 0,1,2,3 or cpu
-
-
Use the pseudo_label.py script to for the pseudo labeling
-
Inference arguments for the pseudo labeling.
-
--checkpoint : saved checkpoint weight file path
-
--class_file : class file which contains class names i.e class.names
-
--dir_name : folder path which contians unlabeld images
-
--conf_thresh : confident threshold value
-
--iou_thresh : IOU threshold value
-
--image_size : test image size (should be multiply by 32 i.e (416,416),(512,512) or (608,608) )
-
- https://github.com/ayooshkathuria/pytorch-yolo-v3
- https://github.com/eriklindernoren/PyTorch-YOLOv3
- https://github.com/Tianxiaomo/pytorch-YOLOv4
@article{yolov3,
title={YOLOv3: An Incremental Improvement},
author={Redmon, Joseph and Farhadi, Ali},
journal = {arXiv},
year={2018}
}
@article{yolov4,
title={YOLOv4: YOLOv4: Optimal Speed and Accuracy of Object Detection},
author={Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao},
journal = {arXiv},
year={2020}
}