Skip to content

Improving Hector SLAM by LiDAR sensor using DBSCAN

Notifications You must be signed in to change notification settings

Kimdoodle/lidar_slam

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

99 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Improving accuracy of Hector SLAM using DBSCAN

DBSCAN을 활용하여 Hector SLAM과정에서의 정확도 향상 연구

Hardware Info

OS: Ubuntu 20.04(ROS1 Noetic)
HW: RPLiDAR A3

Installation

  1. Project folder
cd ~/catkin_ws
mkdir -p src
cd src
  1. RPLiDAR A3 SDK
git clone https://github.com/Slamtec/rplidar_ros.git
  1. Hector SLAM
git clone https://github.com/tu-darmstadt-ros-pkg/hector_slam.git

modify /hector_mapping/launch/mapping_default.launch line 5, 6 into:

<arg name="base_frame" default="base_link"/>
<arg name="odom_frame" default="base_link"/>
  1. This package
git clone https://github.com/Kimdoodle/lidar_slam.git
  1. build
cd ~/catkin_ws
catkin_make

Run

Option 1. Run both lidar and slam

roslaunch lidar_slam hector_lidar.launch

Option 2. Run seperately

roslaunch rplidar_ros rplidar_a3.launch
roslaunch lidar_slam hector_only.launch

Parameters

Change params in /launch/hectormapping.launch

<param name="eps_ratio" value="5"/>
<param name="minpts" value="15"/>
<param name="remains" value="0.5"/>
  1. eps_ratio(0~100) stands for the eps value in DBSCAN, calculated as n% of the Euclidean distance in each scan.
  2. minpts stands for the minimum number of points required to form a cluster.
  3. remains(0.0 ~ 1.0) stands for the remaining clusters, which sorts all clusters by the number of points and retains only n% of them. Other clusters' labels are turned into -1 (outliers).

About

Improving Hector SLAM by LiDAR sensor using DBSCAN

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published