This competition is part of the Fine-Grained Visual Categorization FGVC7 workshop at the Computer Vision and Pattern Recognition Conference CVPR 2020.
class | images |
---|---|
healthy | 516 |
multiple_diseases | 91 |
rust | 622 |
scab | 592 |
Total: 1821 |
Data Preprocessing and Augmentations:
- Resize(256, 256)
- CenterCrop(224, 224)
- HorizontalFlip(), VerticalFlip()
- ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.1, rotate_limit=15)
- RandomBrightness()
- HueSaturationValue()
- Normalize()
Models
Training Settings
- Validation Size = 0.1
- Batch Size = 8
- Epochs = 40
- Loss function: Class-Balanced Binary Cross-Entropy Loss (beta = 0.99)
- Regularization: Weight Decay (lambda = 0.001)
- Optimizer: SGD (lr=0.01, momentum=0.9)
- Learning Rate Scheduler: ReduceLROnPlateau (factor=0.1, patience=5)
ResNet50 | SE ResNet50 | |
Train Accuracy | 98.17 % | 99.63 % |
Valid Accuracy | 96.72 % | 97.81 % |
Train Confusion Matrix | ||
Valid Confusion Matrix | ||
Public Score | 0.942 | 0.947 |