Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Optimize Batch Processing: Improve Performance by 5-10x #80

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 20 additions & 18 deletions trainers/cocoop.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def forward(self, prompts, tokenized_prompts):

# x.shape = [batch_size, n_ctx, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]), tokenized_prompts.argmax(dim=-1)] @ self.text_projection
x = x[torch.arange(x.shape[0]), tokenized_prompts.repeat(x.shape[0]//tokenized_prompts.shape[0], 1).argmax(dim=-1)] @ self.text_projection

return x

Expand Down Expand Up @@ -127,28 +127,31 @@ def construct_prompts(self, ctx, prefix, suffix, label=None):
# suffix: remaining tokens, with shape of (n_cls, *, ctx_dim)

if label is not None:
prefix = prefix[label]
suffix = suffix[label]
prefix = prefix[:,label]
suffix = suffix[:,label]

prompts = torch.cat(
[
prefix, # (dim0, 1, dim)
ctx, # (dim0, n_ctx, dim)
suffix, # (dim0, *, dim)
prefix, # (batch, dim0, 1, dim)
ctx, # (batch, dim0, n_ctx, dim)
suffix, # (batch, dim0, *, dim)
],
dim=1,
dim=2,
)

return prompts

def forward(self, im_features):
prefix = self.token_prefix
prefix = prefix.unsqueeze(0).expand(im_features.shape[0], -1, -1, -1) # (batch, n_cls, 1, dim)
suffix = self.token_suffix
suffix = suffix.unsqueeze(0).expand(im_features.shape[0], -1, -1, -1) # (batch, n_cls, 1, dim)
ctx = self.ctx # (n_ctx, ctx_dim)
ctx = ctx.unsqueeze(0).expand(self.n_cls, -1, -1) # (n_cls, n_ctx, ctx_dim)
bias = self.meta_net(im_features) # (batch, ctx_dim)
bias = bias.unsqueeze(1) # (batch, 1, ctx_dim)
ctx = ctx.unsqueeze(0) # (1, n_ctx, ctx_dim)
ctx_shifted = ctx + bias # (batch, n_ctx, ctx_dim)
bias = bias.unsqueeze(1).unsqueeze(1).expand(-1, self.n_cls, -1, -1) # (batch, n_cls, 1, ctx_dim)
ctx = ctx.unsqueeze(0).expand(im_features.shape[0], -1, -1, -1) # (batch, n_cls, n_ctx, ctx_dim)
ctx_shifted = ctx + bias # (batch, c_cls, n_ctx, ctx_dim)

# Use instance-conditioned context tokens for all classes
prompts = []
Expand Down Expand Up @@ -179,14 +182,13 @@ def forward(self, image, label=None):
image_features = image_features / image_features.norm(dim=-1, keepdim=True)

prompts = self.prompt_learner(image_features)

logits = []
for pts_i, imf_i in zip(prompts, image_features):
text_features = self.text_encoder(pts_i, tokenized_prompts)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
l_i = logit_scale * imf_i @ text_features.t()
logits.append(l_i)
logits = torch.stack(logits)

prompts_shape = prompts.shape
prompts = prompts.view(prompts_shape[0] * prompts_shape[1], prompts_shape[2], prompts_shape[3])
text_features = self.text_encoder(prompts, tokenized_prompts)
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
text_features = text_features.view(prompts_shape[0], prompts_shape[1], text_features.shape[1])
logits = logit_scale * torch.bmm(image_features.unsqueeze(1), text_features.permute(0,2,1)).squeeze(1)

if self.prompt_learner.training:
return F.cross_entropy(logits, label)
Expand Down