-
Notifications
You must be signed in to change notification settings - Fork 154
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
We now allow src/build_function to take NamedTuples as a datastructure for building a function #929
Merged
ChrisRackauckas
merged 4 commits into
JuliaSymbolics:master
from
raphaelchinchilla:args_as_named_tuples
Jul 30, 2023
Merged
Changes from 3 commits
Commits
Show all changes
4 commits
Select commit
Hold shift + click to select a range
2b9c381
We now allow src/build_function to take NamedTuples as a datastructur…
raphaelchinchilla bb8832c
Merge branch 'master' into args_as_named_tuples
raphaelchinchilla fc2b87f
Included tests. Tests are an exact copy of the test for build_functio…
raphaelchinchilla 4057215
Included testing file in runtests.jl
raphaelchinchilla File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,197 @@ | ||
using Symbolics, Test, SparseArrays | ||
@variables a b c | ||
|
||
# Auxiliary Functions | ||
get_sparsity_pattern(h::Union{SparseVector{Num}, SparseMatrixCSC{Num,Int}}) = get_sparsity_pattern(Array(h)) | ||
get_sparsity_pattern(h::Array{Num}) = sparse(Int.(.!isequal.(h, 0))) | ||
|
||
input = (a=1, b=2, c=3) | ||
|
||
# ===== Dense tests ===== | ||
# Arrays of Matrices | ||
h_dense_arraymat = [[a 1; b 0], [0 0; 0 0], [a c; 1 0]] # empty array support required | ||
function h_dense_arraymat_julia!(out, x) | ||
a, b, c = x | ||
out[1] .= [a[1] 1; b[1] 0] | ||
out[2] .= [0 0; 0 0] | ||
out[3] .= [a[1] c[1]; 1 0] | ||
end | ||
|
||
h_dense_arraymat_ip! = eval(Symbolics.build_function(h_dense_arraymat, (a=a, b=b, c=c))[2]) | ||
h_dense_arraymat_ip_skip! = eval(Symbolics.build_function(h_dense_arraymat, (a=a, b=b, c=c), skipzeros=true, fillzeros=false)[2]) | ||
out_1_arraymat = [fill(42, 2, 2) for i in 1:3] | ||
out_2_arraymat = deepcopy(out_1_arraymat) | ||
h_dense_arraymat_julia!(out_1_arraymat, input) | ||
h_dense_arraymat_ip_skip!(out_2_arraymat, input) | ||
@test all(isequal(42), out_2_arraymat[2]) | ||
foreach(mat->fill!(mat, 0), out_2_arraymat) | ||
h_dense_arraymat_ip_skip!(out_2_arraymat, input) | ||
@test out_1_arraymat == out_2_arraymat | ||
h_dense_arraymat_ip!(out_2_arraymat, input) | ||
@test out_1_arraymat == out_2_arraymat | ||
|
||
# Arrays of Matrices, Heterogeneous element types | ||
test_exp = [exp(a) * exp(b), a] | ||
h_dense_arraymat_het = [Symbolics.hessian(t, [a, b]) for t in test_exp] | ||
function h_dense_arraymat_het_julia!(out, x) | ||
a, b, c = x | ||
out[1] .= [exp(a[1]) * exp(b[1]) exp(a[1]) * exp(b[1]); exp(a[1]) * exp(b[1]) exp(a[1]) * exp(b[1])] | ||
out[2] .= [0 0; 0 0] | ||
end | ||
|
||
h_dense_arraymat_het_str = Symbolics.build_function(h_dense_arraymat_het, (a=a, b=b, c=c)) | ||
h_dense_arraymat_het_cse_str = Symbolics.build_function(h_dense_arraymat_het, (a=a, b=b, c=c), cse=true) | ||
h_dense_arraymat_het_ip! = eval(h_dense_arraymat_het_str[2]) | ||
h_dense_arraymat_het_cse_ip! = eval(h_dense_arraymat_het_cse_str[2]) | ||
out_1_arraymat_het = [Array{Float64}(undef, 2, 2) for i in 1:2] | ||
out_2_arraymat_het = [similar(x) for x in out_1_arraymat_het] | ||
out_3_arraymat_het = [similar(x) for x in out_1_arraymat_het] | ||
h_dense_arraymat_het_julia!(out_1_arraymat_het, input) | ||
h_dense_arraymat_het_ip!(out_2_arraymat_het, input) | ||
h_dense_arraymat_het_cse_ip!(out_3_arraymat_het, input) | ||
@test out_1_arraymat_het == out_2_arraymat_het == out_3_arraymat_het | ||
|
||
# Arrays of 1D Vectors | ||
h_dense_arrayvec = [[a, 0, c], [0, 0, 0], [1, a, b]] # same for empty vectors, etc. | ||
function h_dense_arrayvec_julia!(out, x) | ||
a, b, c = x | ||
out[1] .= [a[1], 0, c[1]] | ||
out[2] .= [0, 0, 0] | ||
out[3] .= [1, a[1], b[1]] | ||
end | ||
|
||
h_dense_arrayvec_str = Symbolics.build_function(h_dense_arrayvec, (a=a, b=b, c=c)) | ||
h_dense_arrayvec_ip! = eval(h_dense_arrayvec_str[2]) | ||
out_1_arrayvec = [Vector{Int64}(undef, 3) for i in 1:3] | ||
out_2_arrayvec = [Vector{Int64}(undef, 3) for i in 1:3] | ||
h_dense_arrayvec_julia!(out_1_arrayvec, input) | ||
h_dense_arrayvec_ip!(out_2_arrayvec, input) | ||
@test out_1_arrayvec == out_2_arrayvec | ||
|
||
# Arrays of Arrays of Matrices | ||
h_dense_arrayNestedMat = [[[a 1; b 0], [0 0; 0 0]], [[b 1; a 0], [b c; 0 1]]] | ||
function h_dense_arrayNestedMat_julia!(out, x) | ||
a, b, c = x | ||
out[1][1] .= [a[1] 1; b[1] 0] | ||
out[1][2] .= [0 0; 0 0] | ||
out[2][1] .= [b[1] 1; a[1] 0] | ||
out[2][2] .= [b[1] c[1]; 0 1] | ||
end | ||
|
||
h_dense_arrayNestedMat_str = Symbolics.build_function(h_dense_arrayNestedMat, (a=a, b=b, c=c)) | ||
h_dense_arrayNestedMat_ip! = eval(h_dense_arrayNestedMat_str[2]) | ||
out_1_arrayNestedMat = [[rand(Int64, 2, 2), rand(Int64, 2, 2)], [rand(Int64, 2, 2), rand(Int64, 2, 2)]] # avoid undef broadcasting issue | ||
out_2_arrayNestedMat = [[rand(Int64, 2, 2), rand(Int64, 2, 2)], [rand(Int64, 2, 2), rand(Int64, 2, 2)]] | ||
h_dense_arrayNestedMat_julia!(out_1_arrayNestedMat, input) | ||
h_dense_arrayNestedMat_ip!(out_2_arrayNestedMat, input) | ||
@test out_1_arrayNestedMat == out_2_arrayNestedMat | ||
|
||
# Arrays of Arrays of Matrices, Heterogeneous element types | ||
test_exp = [exp(a) * exp(b), a] | ||
h_dense_arrayNestedMat_het = [[Symbolics.hessian(t, [a, b]) for t in test_exp], [Num[0 0; 0 0], Num[0 0; 0 0]]] | ||
function h_dense_arrayNestedMat_het_julia!(out, x) | ||
a, b, c = x | ||
out[1][1] .= [exp(a[1]) * exp(b[1]) exp(a[1]) * exp(b[1]); exp(a[1]) * exp(b[1]) exp(a[1]) * exp(b[1])] | ||
out[1][2] .= [0 0; 0 0] | ||
out[2][1] .= [0 0; 0 0] | ||
out[2][2] .= [0 0; 0 0] | ||
end | ||
h_dense_arrayNestedMat_het_str = Symbolics.build_function(h_dense_arrayNestedMat_het, (a=a, b=b, c=c)) | ||
h_dense_arrayNestedMat_het_ip! = eval(h_dense_arrayNestedMat_het_str[2]) | ||
out_1_arrayNestedMat_het = [[rand(Int64, 2, 2), rand(Int64, 2, 2)], [rand(Int64, 2, 2), rand(Int64, 2, 2)]] # avoid undef broadcasting issue | ||
out_2_arrayNestedMat_het = [[rand(Int64, 2, 2), rand(Int64, 2, 2)], [rand(Int64, 2, 2), rand(Int64, 2, 2)]] | ||
h_dense_arrayNestedMat_julia!(out_1_arrayNestedMat_het, input) | ||
h_dense_arrayNestedMat_ip!(out_2_arrayNestedMat_het, input) | ||
@test out_1_arrayNestedMat_het == out_2_arrayNestedMat_het | ||
|
||
# ===== Sparse tests ===== | ||
# Array of Matrices | ||
h_sparse_arraymat = sparse.([[a 1; b 0], [0 0; 0 0], [a c; 1 0]]) | ||
function h_sparse_arraymat_julia!(out, x) | ||
a, b, c = x | ||
out[1][1, 1] = a[1] | ||
out[1][1, 2] = 1 | ||
out[1][2, 1] = b[1] | ||
out[2] = sparse([0 0; 0 0]) # no undef constructor for SparseMatrixCSC | ||
out[3][1, 1] = a[1] | ||
out[3][1, 2] = c[1] | ||
out[3][2, 1] = 1 | ||
end | ||
|
||
h_sparse_arraymat_str = Symbolics.build_function(h_sparse_arraymat, (a=a, b=b, c=c)) | ||
h_sparse_arraymat_ip! = eval(h_sparse_arraymat_str[2]) | ||
h_sparse_arraymat_sparsity_patterns = map(get_sparsity_pattern, h_sparse_arraymat) | ||
out_1_arraymat = [similar(h) for h in h_sparse_arraymat_sparsity_patterns] | ||
out_2_arraymat = [similar(h) for h in h_sparse_arraymat_sparsity_patterns] # can't do similar() because it will just be #undef, with the wrong sparsity pattern | ||
h_sparse_arraymat_ip!(out_2_arraymat, input) | ||
h_sparse_arraymat_julia!(out_1_arraymat, input) | ||
@test out_1_arraymat == out_2_arraymat | ||
|
||
# Array of 1D Vectors | ||
h_sparse_arrayvec = sparse.([[a, 0, c], [0, 0, 0], [1, a, b]]) | ||
function h_sparse_arrayvec_julia!(out, x) | ||
a, b, c = x | ||
out[1][1] = a[1] | ||
out[1][3] = c[1] | ||
out[2] = sparse([0, 0, 0]) # necessary because sparsity pattern is 3 elements with 0 stored, not 0 elements | ||
out[3][1] = 1 | ||
out[3][2] = a[1] | ||
out[3][3] = b[1] | ||
end | ||
|
||
h_sparse_arrayvec_str = Symbolics.build_function(h_sparse_arrayvec, (a=a, b=b, c=c)) | ||
h_sparse_arrayvec_ip! = eval(h_sparse_arrayvec_str[2]) | ||
h_sparse_arrayvec_sparsity_patterns = map(get_sparsity_pattern, h_sparse_arrayvec) | ||
out_1_arrayvec = [similar(h) for h in h_sparse_arrayvec_sparsity_patterns] | ||
out_2_arrayvec = [similar(h) for h in h_sparse_arrayvec_sparsity_patterns] | ||
h_sparse_arrayvec_julia!(out_1_arrayvec, input) | ||
h_sparse_arrayvec_ip!(out_2_arrayvec, input) | ||
@test out_1_arrayvec == out_2_arrayvec | ||
|
||
# Arrays of Arrays of Matrices | ||
h_sparse_arrayNestedMat = [sparse.([[a 1; b 0], [0 0; 0 0]]), sparse.([[b 1; a 0], [b c; 0 1]])] | ||
function h_sparse_arrayNestedMat_julia!(out, x) | ||
a, b, c = x | ||
out[1][1][1, 1] = a[1] | ||
out[1][1][1, 2] = 1 | ||
out[1][1][2, 1] = b[1] | ||
out[1][2] = sparse([0 0; 0 0]) | ||
out[2][1][1, 1] = b[1] | ||
out[2][1][1, 2] = 1 | ||
out[2][1][2, 1] = a[1] | ||
out[2][2][1, 1] = b[1] | ||
out[2][2][1, 2] = c[1] | ||
out[2][2][2, 2] = 1 | ||
end | ||
|
||
h_sparse_arrayNestedMat_str = Symbolics.build_function(h_sparse_arrayNestedMat, (a=a, b=b, c=c)) | ||
h_sparse_arrayNestedMat_ip! = eval(h_sparse_arrayNestedMat_str[2]) | ||
h_sparse_arrayNestedMat_sparsity_patterns = [map(get_sparsity_pattern, h) for h in h_sparse_arrayNestedMat] | ||
out_1_arrayNestedMat = [[similar(h_sub) for h_sub in h] for h in h_sparse_arrayNestedMat_sparsity_patterns] | ||
out_2_arrayNestedMat = [[similar(h_sub) for h_sub in h] for h in h_sparse_arrayNestedMat_sparsity_patterns] | ||
h_sparse_arrayNestedMat_julia!(out_1_arrayNestedMat, input) | ||
h_sparse_arrayNestedMat_ip!(out_2_arrayNestedMat, input) | ||
@test out_1_arrayNestedMat == out_2_arrayNestedMat | ||
|
||
# Additional Tests | ||
# Returning 0-element structures (corresponding to empty Jacobians) | ||
# Arrays of Matrices | ||
h_empty = [[a b; c 0], Array{Num,2}(undef, 0,0)] | ||
h_empty_str = Symbolics.build_function(h_empty, (a=a, b=b, c=c)) | ||
h_empty_ip! = eval(h_empty_str[2]) | ||
out = [Matrix{Int64}(undef, 2, 2), Matrix{Int64}(undef, 0, 0)] | ||
h_empty_ip!(out, input) # should just not fail | ||
|
||
# Array of Vectors | ||
h_empty_vec = [[a, b, c, 0], Vector{Num}(undef,0)] | ||
h_empty_vec_str = Symbolics.build_function(h_empty_vec, (a=a, b=b, c=c)) | ||
h_empty_vec_ip! = eval(h_empty_vec_str[2]) | ||
out = [Vector{Int64}(undef, 4), Vector{Int64}(undef, 0)] | ||
h_empty_vec_ip!(out, input) # should just not fail | ||
|
||
# Arrays of Arrays of Matrices | ||
h_emptyNested = [[[a b; c 0]], Array{Array{Num, 2}}(undef, 0)] # emptyNested array of arrays | ||
h_emptyNested_str = Symbolics.build_function(h_emptyNested, (a=a, b=b, c=c)) | ||
h_emptyNested_ip! = eval(h_emptyNested_str[2]) | ||
out = [[[1 2;3 4]], Array{Array{Int64,2},1}(undef, 0)] | ||
h_emptyNested_ip!(out, input) # should just not fail |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
this file isn't in runtests.jl so it's not tested.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Sorry, I forgot about that. Just did it.