-
Notifications
You must be signed in to change notification settings - Fork 153
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add error hint on implicit Float conversion from Num #1001
Merged
Merged
Commits on Oct 16, 2023
-
Add error hint on implicit Float conversion from Num
```julia using ModelingToolkit, OrdinaryDiffEq @variables t x(t) @parameters y ff(x) = x + y @register_symbolic ff(x) D = Differential(t) eqs = [D(x) ~ ff(x)] @nAmed sys = ODESystem(eqs,t) prob = ODEProblem(sys, [x=>1, y=>1], (0.0,1.0)) sol = solve(prob, Tsit5()) ``` Example: ```julia julia> sol = solve(prob, Tsit5()) ERROR: MethodError: no method matching Float64(::Num) An implict conversion of symbolic Num into a Float64 was encountered. Common causes for this error include: 1. A substitution resulted in numerical values, but is not automatically converted to numerical values. For example: ```julia @variables x y result = [1.0] A = [x x^2 y+x 2x + y] sub = substitute(A, Dict([x=>2.0, y=>2])) result[1] = sub[1] ``` The reason is because the result of `sub` is still symbolic: ```julia julia> sub = substitute(A, Dict([x=>2.0, y=>2])) 2×2 Matrix{Num}: 2.0 4.0 4.0 6.0 ``` Notice that the return is a `Matrix{Num}`, not a `Matrix{Float64}`. To fix this, ensure that the type is converted, i.e. `sub = Symbolics.unwrap.(substitute(A, Dict([x=>2.0, y=>2])))`, or `result[1] = Symbolics.unwrap(sub[1])`. 2. Captured symbolic values inside of registered functions. An example of this version of the error is the following: ```julia @variables x y ff(x) = x + y @register_symbolic ff(x) result = [0.0] result[1] = eval(build_function(ff(x),[x,y]))(1.0) # Error ``` Notice that the is the fact that the generated function call `eval(build_function(ff(x),x))(1.0)` returns a symbolic value (`1.0 + y`), not a numerical value. This is because the value `y` is a global symbol enclosed into `ff`. To fix this, ensure that any symbolic value that is used in registered functions is passed in, i.e. : ```julia ff(x) = x + y @register_symbolic ff(x) ``` Closest candidates are: (::Type{T})(::Real, ::RoundingMode) where T<:AbstractFloat @ Base rounding.jl:207 (::Type{T})(::T) where T<:Number @ Core boot.jl:790 Float64(::IrrationalConstants.Sqrt2π) @ IrrationalConstants ~/.julia/packages/IrrationalConstants/vp5v4/src/macro.jl:112 ... Stacktrace: [1] convert(::Type{Float64}, x::Num) @ Base ./number.jl:7 [2] setindex!(A::Vector{Float64}, x::Num, i1::Int64) @ Base ./array.jl:1019 [3] macro expansion @ RuntimeGeneratedFunctions ~/.julia/packages/SymbolicUtils/ssQsQ/src/code.jl:418 [inlined] [4] macro expansion @ RuntimeGeneratedFunctions ~/.julia/packages/Symbolics/iuV1k/src/build_function.jl:537 [inlined] [5] macro expansion @ RuntimeGeneratedFunctions ~/.julia/packages/SymbolicUtils/ssQsQ/src/code.jl:375 [inlined] [6] macro expansion @ RuntimeGeneratedFunctions ~/.julia/packages/RuntimeGeneratedFunctions/Yo8zx/src/RuntimeGeneratedFunctions.jl:163 [inlined] [7] macro expansion @ RuntimeGeneratedFunctions ./none:0 [inlined] [8] generated_callfunc @ RuntimeGeneratedFunctions ./none:0 [inlined] [9] (::RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋out, :ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0x2e3aac43, 0x10974b89, 0xe8b09d5e, 0xdc2870ad, 0xdb6f4094), Nothing})(::Vector{Float64}, ::Vector{Float64}, ::Vector{Float64}, ::Float64) @ RuntimeGeneratedFunctions ~/.julia/packages/RuntimeGeneratedFunctions/Yo8zx/src/RuntimeGeneratedFunctions.jl:150 [10] k @ ModelingToolkit ~/.julia/packages/ModelingToolkit/N1HdY/src/systems/diffeqs/abstractodesystem.jl:371 [inlined] [11] Void @ SciMLBase ~/.julia/dev/SciMLBase/src/utils.jl:475 [inlined] [12] (::FunctionWrappers.CallWrapper{Nothing})(f::SciMLBase.Void{ModelingToolkit.var"#k#545"{RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0xc8306229, 0x6d8f5b56, 0xb3591472, 0x831db891, 0xf82bf59d), Nothing}, RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋out, :ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0x2e3aac43, 0x10974b89, 0xe8b09d5e, 0xdc2870ad, 0xdb6f4094), Nothing}}}, arg1::Vector{Float64}, arg2::Vector{Float64}, arg3::Vector{Float64}, arg4::Float64) @ FunctionWrappers ~/.julia/packages/FunctionWrappers/Q5cBx/src/FunctionWrappers.jl:65 [13] macro expansion @ OrdinaryDiffEq ~/.julia/packages/FunctionWrappers/Q5cBx/src/FunctionWrappers.jl:137 [inlined] [14] do_ccall @ OrdinaryDiffEq ~/.julia/packages/FunctionWrappers/Q5cBx/src/FunctionWrappers.jl:125 [inlined] [15] FunctionWrapper @ OrdinaryDiffEq ~/.julia/packages/FunctionWrappers/Q5cBx/src/FunctionWrappers.jl:144 [inlined] [16] _call @ OrdinaryDiffEq ~/.julia/packages/FunctionWrappersWrappers/9XR0m/src/FunctionWrappersWrappers.jl:12 [inlined] [17] FunctionWrappersWrapper @ OrdinaryDiffEq ~/.julia/packages/FunctionWrappersWrappers/9XR0m/src/FunctionWrappersWrappers.jl:10 [inlined] [18] ODEFunction @ OrdinaryDiffEq ~/.julia/dev/SciMLBase/src/scimlfunctions.jl:2394 [inlined] [19] initialize!(integrator::OrdinaryDiffEq.ODEIntegrator{Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, true, Vector{Float64}, Nothing, Float64, Vector{Float64}, Float64, Float64, Float64, Float64, Vector{Vector{Float64}}, ODESolution{Float64, 2, Vector{Vector{Float64}}, Nothing, Nothing, Vector{Float64}, Vector{Vector{Vector{Float64}}}, ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, Vector{Float64}, ODEFunction{true, SciMLBase.AutoSpecialize, FunctionWrappersWrappers.FunctionWrappersWrapper{Tuple{FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, Vector{Float64}, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}}, false}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Vector{Symbol}, Symbol, Vector{Any}, ModelingToolkit.var"#649#generated_observed#555"{Bool, ODESystem, Dict{Any, Any}, Vector{Any}}, Nothing, ODESystem}, @kwargs{}, SciMLBase.StandardODEProblem}, Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, OrdinaryDiffEq.InterpolationData{ODEFunction{true, SciMLBase.AutoSpecialize, FunctionWrappersWrappers.FunctionWrappersWrapper{Tuple{FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, Vector{Float64}, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}}, false}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Vector{Symbol}, Symbol, Vector{Any}, ModelingToolkit.var"#649#generated_observed#555"{Bool, ODESystem, Dict{Any, Any}, Vector{Any}}, Nothing, ODESystem}, Vector{Vector{Float64}}, Vector{Float64}, Vector{Vector{Vector{Float64}}}, OrdinaryDiffEq.Tsit5Cache{Vector{Float64}, Vector{Float64}, Vector{Float64}, typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}}, DiffEqBase.Stats, Nothing}, ODEFunction{true, SciMLBase.AutoSpecialize, FunctionWrappersWrappers.FunctionWrappersWrapper{Tuple{FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, Vector{Float64}, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}}, false}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Vector{Symbol}, Symbol, Vector{Any}, ModelingToolkit.var"#649#generated_observed#555"{Bool, ODESystem, Dict{Any, Any}, Vector{Any}}, Nothing, ODESystem}, OrdinaryDiffEq.Tsit5Cache{Vector{Float64}, Vector{Float64}, Vector{Float64}, typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, OrdinaryDiffEq.DEOptions{Float64, Float64, Float64, Float64, PIController{Rational{Int64}}, typeof(DiffEqBase.ODE_DEFAULT_NORM), typeof(LinearAlgebra.opnorm), Nothing, CallbackSet{Tuple{}, Tuple{}}, typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), DataStructures.BinaryHeap{Float64, DataStructures.FasterForward}, DataStructures.BinaryHeap{Float64, DataStructures.FasterForward}, Nothing, Nothing, Int64, Tuple{}, Tuple{}, Tuple{}}, Vector{Float64}, Float64, Nothing, OrdinaryDiffEq.DefaultInit}, cache::OrdinaryDiffEq.Tsit5Cache{Vector{Float64}, Vector{Float64}, Vector{Float64}, typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}) @ OrdinaryDiffEq ~/.julia/dev/OrdinaryDiffEq/src/perform_step/low_order_rk_perform_step.jl:792 [20] __init(prob::ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, Vector{Float64}, ODEFunction{true, SciMLBase.AutoSpecialize, FunctionWrappersWrappers.FunctionWrappersWrapper{Tuple{FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{Float64}, Vector{Float64}, Vector{Float64}, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, Float64}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, Vector{Float64}, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}, FunctionWrappers.FunctionWrapper{Nothing, Tuple{Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}, Vector{Float64}, ForwardDiff.Dual{ForwardDiff.Tag{DiffEqBase.OrdinaryDiffEqTag, Float64}, Float64, 1}}}}, false}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Vector{Symbol}, Symbol, Vector{Any}, ModelingToolkit.var"#649#generated_observed#555"{Bool, ODESystem, Dict{Any, Any}, Vector{Any}}, Nothing, ODESystem}, @kwargs{}, SciMLBase.StandardODEProblem}, alg::Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}, timeseries_init::Tuple{}, ts_init::Tuple{}, ks_init::Tuple{}, recompile::Type{Val{true}}; saveat::Tuple{}, tstops::Tuple{}, d_discontinuities::Tuple{}, save_idxs::Nothing, save_everystep::Bool, save_on::Bool, save_start::Bool, save_end::Nothing, callback::Nothing, dense::Bool, calck::Bool, dt::Float64, dtmin::Nothing, dtmax::Float64, force_dtmin::Bool, adaptive::Bool, gamma::Rational{Int64}, abstol::Nothing, reltol::Nothing, qmin::Rational{Int64}, qmax::Int64, qsteady_min::Int64, qsteady_max::Int64, beta1::Nothing, beta2::Nothing, qoldinit::Rational{Int64}, controller::Nothing, fullnormalize::Bool, failfactor::Int64, maxiters::Int64, internalnorm::typeof(DiffEqBase.ODE_DEFAULT_NORM), internalopnorm::typeof(LinearAlgebra.opnorm), isoutofdomain::typeof(DiffEqBase.ODE_DEFAULT_ISOUTOFDOMAIN), unstable_check::typeof(DiffEqBase.ODE_DEFAULT_UNSTABLE_CHECK), verbose::Bool, timeseries_errors::Bool, dense_errors::Bool, advance_to_tstop::Bool, stop_at_next_tstop::Bool, initialize_save::Bool, progress::Bool, progress_steps::Int64, progress_name::String, progress_message::typeof(DiffEqBase.ODE_DEFAULT_PROG_MESSAGE), progress_id::Symbol, userdata::Nothing, allow_extrapolation::Bool, initialize_integrator::Bool, alias_u0::Bool, alias_du0::Bool, initializealg::OrdinaryDiffEq.DefaultInit, kwargs::@kwargs{}) @ OrdinaryDiffEq ~/.julia/dev/OrdinaryDiffEq/src/solve.jl:502 [21] __init (repeats 5 times) @ DiffEqBase ~/.julia/dev/OrdinaryDiffEq/src/solve.jl:10 [inlined] [22] #__solve#740 @ DiffEqBase ~/.julia/dev/OrdinaryDiffEq/src/solve.jl:5 [inlined] [23] __solve @ DiffEqBase ~/.julia/dev/OrdinaryDiffEq/src/solve.jl:1 [inlined] [24] #solve_call#34 @ DiffEqBase ~/.julia/dev/DiffEqBase/src/solve.jl:571 [inlined] [25] solve_call @ DiffEqBase ~/.julia/dev/DiffEqBase/src/solve.jl:537 [inlined] [26] solve_up(prob::ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, Vector{Float64}, ODEFunction{true, SciMLBase.AutoSpecialize, ModelingToolkit.var"#k#545"{RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0xc8306229, 0x6d8f5b56, 0xb3591472, 0x831db891, 0xf82bf59d), Nothing}, RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋out, :ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0x2e3aac43, 0x10974b89, 0xe8b09d5e, 0xdc2870ad, 0xdb6f4094), Nothing}}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Vector{Symbol}, Symbol, Vector{Any}, ModelingToolkit.var"#649#generated_observed#555"{Bool, ODESystem, Dict{Any, Any}, Vector{Any}}, Nothing, ODESystem}, @kwargs{}, SciMLBase.StandardODEProblem}, sensealg::Nothing, u0::Vector{Float64}, p::Vector{Float64}, args::Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}; kwargs::@kwargs{}) @ DiffEqBase ~/.julia/dev/DiffEqBase/src/solve.jl:1033 [27] solve_up @ DiffEqBase ~/.julia/dev/DiffEqBase/src/solve.jl:1006 [inlined] [28] #solve#40 @ DiffEqBase ~/.julia/dev/DiffEqBase/src/solve.jl:943 [inlined] [29] solve(prob::ODEProblem{Vector{Float64}, Tuple{Float64, Float64}, true, Vector{Float64}, ODEFunction{true, SciMLBase.AutoSpecialize, ModelingToolkit.var"#k#545"{RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0xc8306229, 0x6d8f5b56, 0xb3591472, 0x831db891, 0xf82bf59d), Nothing}, RuntimeGeneratedFunctions.RuntimeGeneratedFunction{(:ˍ₋out, :ˍ₋arg1, :ˍ₋arg2, :t), ModelingToolkit.var"#_RGF_ModTag", ModelingToolkit.var"#_RGF_ModTag", (0x2e3aac43, 0x10974b89, 0xe8b09d5e, 0xdc2870ad, 0xdb6f4094), Nothing}}, LinearAlgebra.UniformScaling{Bool}, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Vector{Symbol}, Symbol, Vector{Any}, ModelingToolkit.var"#649#generated_observed#555"{Bool, ODESystem, Dict{Any, Any}, Vector{Any}}, Nothing, ODESystem}, @kwargs{}, SciMLBase.StandardODEProblem}, args::Tsit5{typeof(OrdinaryDiffEq.trivial_limiter!), typeof(OrdinaryDiffEq.trivial_limiter!), Static.False}) @ DiffEqBase ~/.julia/dev/DiffEqBase/src/solve.jl:933 [30] top-level scope @ REPL[11]:1 ```
Configuration menu - View commit details
-
Copy full SHA for c2f9e66 - Browse repository at this point
Copy the full SHA c2f9e66View commit details
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.