Skip to content

Commit

Permalink
Enhance ranking code (#589)
Browse files Browse the repository at this point in the history
* ordinalrank!(): use eachindex()

* ranking: use _rank() helper, @inbounds

_rank() helper provides:
1) correct support for n-dim, n>1, input arrays
2) minimizes code duplication
3) passthrough of sortperm() args
4) macro-less support for missing values

* replace while-loops with for-loops

* rankings: expand sortkwargs in docstring

* rankings: cleanup docstring
  • Loading branch information
alyst authored Feb 1, 2021
1 parent ed3b86e commit 4620545
Showing 1 changed file with 59 additions and 79 deletions.
138 changes: 59 additions & 79 deletions src/ranking.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,65 +6,70 @@
# The implementations here follow this wikipedia page.
#


function _check_randparams(rks, x, p)
n = length(rks)
length(x) == length(p) == n || raise_dimerror()
return n
end

# ranking helper function: calls sortperm(x) and then ranking method f!
function _rank(f!, x::AbstractArray, R::Type=Int; sortkwargs...)
rks = similar(x, R)
ord = reshape(sortperm(vec(x); sortkwargs...), size(x))
return f!(rks, x, ord)
end

# ranking helper function for arrays with missing values
function _rank(f!, x::AbstractArray{>: Missing}, R::Type=Int; sortkwargs...)
inds = findall(!ismissing, vec(x))
isempty(inds) && return missings(R, size(x))
xv = disallowmissing(view(vec(x), inds))
ordv = sortperm(xv; sortkwargs...)
rks = missings(R, size(x))
f!(view(rks, inds), xv, ordv)
return rks
end

# Ordinal ranking ("1234 ranking") -- use the literal order resulted from sort
function ordinalrank!(rks::AbstractArray, x::AbstractArray, p::IntegerArray)
n = _check_randparams(rks, x, p)

if n > 0
i = 1
while i <= n
rks[p[i]] = i
i += 1
end
function _ordinalrank!(rks::AbstractArray, x::AbstractArray, p::IntegerArray)
_check_randparams(rks, x, p)
@inbounds for i in eachindex(p)
rks[p[i]] = i
end

return rks
end


"""
ordinalrank(x; lt = isless, rev::Bool = false)
ordinalrank(x; lt=isless, by=identity, rev::Bool=false, ...)
Return the [ordinal ranking](https://en.wikipedia.org/wiki/Ranking#Ordinal_ranking_.28.221234.22_ranking.29)
("1234" ranking) of an array. The `lt` keyword allows providing a custom "less
than" function; use `rev=true` to reverse the sorting order.
All items in `x` are given distinct, successive ranks based on their
position in `sort(x; lt = lt, rev = rev)`.
("1234" ranking) of an array. Supports the same keyword arguments as the `sort` function.
All items in `x` are given distinct, successive ranks based on their position
in the sorted vector.
Missing values are assigned rank `missing`.
"""
ordinalrank(x::AbstractArray; lt = isless, rev::Bool = false) =
ordinalrank!(Array{Int}(undef, size(x)), x, sortperm(x; lt = lt, rev = rev))
ordinalrank(x::AbstractArray; sortkwargs...) =
_rank(_ordinalrank!, x; sortkwargs...)


# Competition ranking ("1224" ranking) -- resolve tied ranks using min
function competerank!(rks::AbstractArray, x::AbstractArray, p::IntegerArray)
function _competerank!(rks::AbstractArray, x::AbstractArray, p::IntegerArray)
n = _check_randparams(rks, x, p)

if n > 0
@inbounds if n > 0
p1 = p[1]
v = x[p1]
rks[p1] = k = 1

i = 2
while i <= n
for i in 2:n
pi = p[i]
xi = x[pi]
if xi == v
rks[pi] = k
else
rks[pi] = k = i
if xi != v
v = xi
k = i
end
i += 1
rks[pi] = k
end
end

Expand All @@ -73,39 +78,35 @@ end


"""
competerank(x; lt = isless, rev::Bool = false)
competerank(x; lt=isless, by=identity, rev::Bool=false, ...)
Return the [standard competition ranking](http://en.wikipedia.org/wiki/Ranking#Standard_competition_ranking_.28.221224.22_ranking.29)
("1224" ranking) of an array. The `lt` keyword allows providing a custom "less
than" function; use `rev=true` to reverse the sorting order.
Items that compare equal are given the same rank, then a gap is left
in the rankings the size of the number of tied items - 1.
("1224" ranking) of an array. Supports the same keyword arguments as the `sort` function.
Equal (*"tied"*) items are given the same rank, and the next rank comes after a gap
that is equal to the number of tied items - 1.
Missing values are assigned rank `missing`.
"""
competerank(x::AbstractArray; lt = isless, rev::Bool = false) =
competerank!(Array{Int}(undef, size(x)), x, sortperm(x; lt = lt, rev = rev))
competerank(x::AbstractArray; sortkwargs...) =
_rank(_competerank!, x; sortkwargs...)


# Dense ranking ("1223" ranking) -- resolve tied ranks using min
function denserank!(rks::AbstractArray, x::AbstractArray, p::IntegerArray)
function _denserank!(rks::AbstractArray, x::AbstractArray, p::IntegerArray)
n = _check_randparams(rks, x, p)

if n > 0
@inbounds if n > 0
p1 = p[1]
v = x[p1]
rks[p1] = k = 1

i = 2
while i <= n
for i in 2:n
pi = p[i]
xi = x[pi]
if xi == v
rks[pi] = k
else
rks[pi] = (k += 1)
if xi != v
v = xi
k += 1
end
i += 1
rks[pi] = k
end
end

Expand All @@ -114,29 +115,27 @@ end


"""
denserank(x)
denserank(x; lt=isless, by=identity, rev::Bool=false, ...)
Return the [dense ranking](http://en.wikipedia.org/wiki/Ranking#Dense_ranking_.28.221223.22_ranking.29)
("1223" ranking) of an array. The `lt` keyword allows providing a custom "less
than" function; use `rev=true` to reverse the sorting order. Items that
compare equal receive the same ranking, and the next subsequent rank is
("1223" ranking) of an array. Supports the same keyword arguments as the `sort` function.
Equal items receive the same rank, and the next subsequent rank is
assigned with no gap.
Missing values are assigned rank `missing`.
"""
denserank(x::AbstractArray; lt = isless, rev::Bool = false) =
denserank!(Array{Int}(undef, size(x)), x, sortperm(x; lt = lt, rev = rev))
denserank(x::AbstractArray; sortkwargs...) =
_rank(_denserank!, x; sortkwargs...)


# Tied ranking ("1 2.5 2.5 4" ranking) -- resolve tied ranks using average
function tiedrank!(rks::AbstractArray, x::AbstractArray, p::IntegerArray)
function _tiedrank!(rks::AbstractArray, x::AbstractArray, p::IntegerArray)
n = _check_randparams(rks, x, p)

if n > 0
@inbounds if n > 0
v = x[p[1]]

s = 1 # starting index of current range
e = 2 # pass-by-end index of current range
while e <= n
for e in 2:n # e is pass-by-end index of current range
cx = x[p[e]]
if cx != v
# fill average rank to s : e-1
Expand All @@ -148,10 +147,9 @@ function tiedrank!(rks::AbstractArray, x::AbstractArray, p::IntegerArray)
s = e
v = cx
end
e += 1
end

# the last range (e == n+1)
# the last range
ar = (s + n) / 2
for i = s : n
rks[p[i]] = ar
Expand All @@ -161,33 +159,15 @@ function tiedrank!(rks::AbstractArray, x::AbstractArray, p::IntegerArray)
return rks
end

# order (aka. rank), resolving ties using the mean rank
"""
tiedrank(x)
tiedrank(x; lt=isless, by=identity, rev::Bool=false, ...)
Return the [tied ranking](http://en.wikipedia.org/wiki/Ranking#Fractional_ranking_.28.221_2.5_2.5_4.22_ranking.29),
also called fractional or "1 2.5 2.5 4" ranking,
of an array. The `lt` keyword allows providing a custom "less
than" function; use `rev=true` to reverse the sorting order.
Items that compare equal receive the mean of the
rankings they would have been assigned under ordinal ranking.
of an array. Supports the same keyword arguments as the `sort` function.
Equal (*"tied"*) items receive the mean of the ranks they would
have been assigned under the ordinal ranking (see [`ordinalrank`](@ref)).
Missing values are assigned rank `missing`.
"""
tiedrank(x::AbstractArray; lt = isless, rev::Bool = false) =
tiedrank!(Array{Float64}(undef, size(x)), x, sortperm(x; lt = lt, rev = rev))

for (f, f!, S) in zip([:ordinalrank, :competerank, :denserank, :tiedrank],
[:ordinalrank!, :competerank!, :denserank!, :tiedrank!],
[Int, Int, Int, Float64])
@eval begin
function $f(x::AbstractArray{>: Missing}; lt = isless, rev::Bool = false)
inds = findall(!ismissing, x)
isempty(inds) && return missings($S, size(x))
xv = disallowmissing(view(x, inds))
sp = sortperm(xv; lt = lt, rev = rev)
rks = missings($S, length(x))
$(f!)(view(rks, inds), xv, sp)
rks
end
end
end
tiedrank(x::AbstractArray; sortkwargs...) =
_rank(_tiedrank!, x, Float64; sortkwargs...)

0 comments on commit 4620545

Please sign in to comment.