-
Notifications
You must be signed in to change notification settings - Fork 50
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add-goddardrocket #183
base: main
Are you sure you want to change the base?
Add-goddardrocket #183
Changes from all commits
e70da0d
84b6418
bf6cdef
c3794a9
515f009
fbf50aa
00ed5eb
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
using Plots | ||
using ADNLPModels, NLPModels, NLPModelsIpopt, DataFrames, LinearAlgebra, Distances, SolverCore, PyPlot | ||
|
||
function minimalsurface(; n::Int = default_nvar, type::Val{T} = Val(Float64), kwargs...) where {T} | ||
|
||
# domain definition | ||
xmin = T(0.) | ||
xmax = T(1.) | ||
ymin = T(0.) | ||
ymax = T(1.) | ||
|
||
# Definition of the mesh | ||
nx = 20 # number of points according to the direction x | ||
ny = 20 # number of points according to the direction y | ||
|
||
|
||
x_mesh = LinRange(xmin, xmax, nx) # coordinates of the mesh points x | ||
y_mesh = LinRange(ymin, ymax, ny) # coordinates of the mesh points y | ||
|
||
v_D = zeros(nx,ny) # Surface matrix initialization | ||
for i in 1:nx | ||
for j in 1:ny | ||
v_D[i, j] = T(1 - (2 * x_mesh[i] - 1)^2) | ||
end | ||
end | ||
|
||
|
||
function Objective(v) | ||
v_reshape = reshape(v, (nx, ny)) # vector to matrix conversion | ||
hx = T(1/nx) # step on the x axis | ||
hy = T(1/ny) # step on the y axis | ||
S = T(0.) # sum initialization | ||
# Calculation of the gradient according to x | ||
for i in 1:nx | ||
for j in 1:ny | ||
if i == 1 | ||
gi = T((v_reshape[i+1, j] - v_reshape[i, j])/hx) | ||
elseif i == nx | ||
gi = T((v_reshape[i, j] - v_reshape[i-1, j])/hx) | ||
else | ||
gi = T((v_reshape[i+1, j] - v_reshape[i, j])/(2 * hx)) | ||
end | ||
# Calculation of the gradient according to x | ||
if j == 1 | ||
gj = T((v_reshape[i, j+1] - v_reshape[i, j])/hy) | ||
elseif j == ny | ||
gj = T((v_reshape[i, j] - v_reshape[i, j-1])/hy) | ||
else | ||
gj = T((v_reshape[i, j+1] - v_reshape[i, j])/(2 * hy)) | ||
end | ||
|
||
s = T(hx * hy * (sqrt(1 + (gi^2) +(gj)^2))) # Approximation of the derivative with the method of rectangles | ||
S = S + s # Update the value of S | ||
end | ||
end | ||
return(S) | ||
end | ||
|
||
function constraints(v) | ||
v_reshape = reshape(v, (nx, ny)) # vector to matrix conversion | ||
c = similar(v_reshape, nx*ny + 2*(nx +ny)) # creating a constraint vector | ||
index = 1 | ||
v_L = zeros(T, nx,ny) # Creation of an obstacle called v_L | ||
for i in 1:nx | ||
for j in 1:ny | ||
if norm(x_mesh[i]-(1/2)) ≤ 1/4 && norm(y_mesh[j]-(1/2)) ≤ 1/4 | ||
v_L[i, j] = T(1.) # Update the value of v_L according to the values of x and y | ||
end | ||
end | ||
end | ||
for i in 1:nx | ||
for j in 1:ny | ||
c[index] = T(v_reshape[i, j] - v_L[i, j]) # Constraint that the surface must be above the obstruction | ||
index = index + 1 | ||
end | ||
end | ||
for j in 1:ny | ||
c[index] = T(v_reshape[1, j]) # Constraint: when x=1 or x=nx, the surface is set to 0 | ||
index = index + 1 | ||
c[index] = T(v_reshape[nx, j]) # Constraint: when x=1 or x=nx, the surface is set to 0 | ||
index = index + 1 | ||
end | ||
for i in 1:nx | ||
c[index] = T(v_reshape[i, 1] - 1 + (2 * i -1)^2) # Constraint: when y=1 or y=ny, the surface follows the function " 1 + (2 * x -1)^2 " | ||
index = index + 1 | ||
c[index] = T(v_reshape[i, ny] - 1 + (2 * i -1)^2) # Constraint: when y=1 or y=ny, the surface follows the function " 1 + (2 * x -1)^2 " | ||
index = index + 1 | ||
|
||
end | ||
return c | ||
end | ||
|
||
|
||
lcon = zeros(T, nx * ny + 2 * nx + 2 * ny) # Lower bound all equal to 0 | ||
ucon = zeros(T, nx * ny + 2 * nx + 2 * ny) # Creation of the upper bound vector | ||
ucon[1 : ny * nx] = Inf * ones(T, nx * ny) # first part equal to infinity | ||
ucon[nx * ny + 1 : end] = zeros(T, 2 * nx + 2 * ny) # second part part equal to zero | ||
|
||
v = vec(v_D) #convert to vector | ||
|
||
nlp = ADNLPModel(Objective, v, constraints, lcon, ucon) | ||
return nlp | ||
end | ||
|
||
|
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,91 @@ | ||||||
# Find the surface with minimal area, given boundary conditions, | ||||||
# and above an obstacle. | ||||||
|
||||||
# This is problem 10 in the COPS (Version 3) collection of | ||||||
# E. Dolan and J. More' | ||||||
# see "Benchmarking Optimization Software with COPS" | ||||||
# Argonne National Labs Technical Report ANL/MCS-246 (2004) | ||||||
# classification OBR2-AN-V-V | ||||||
|
||||||
function rocket(; n::Int = default_nvar, type::Val{T} = Val(Float64), kwargs...) where {T} | ||||||
|
||||||
# Initialisation | ||||||
# Constants | ||||||
h_0 = T(1) # height initialization | ||||||
v_0 = T(0) # speed initialization | ||||||
m_0 = T(1) # mass initialization | ||||||
g_0 = T(1) # gravity initialization | ||||||
|
||||||
# Parameters | ||||||
|
||||||
h_c = T(500) # Used for drag | ||||||
v_c = T(620) # Used for drag | ||||||
m_c = T(0.6) # Fraction of initial mass left at end | ||||||
|
||||||
c = T(1/2 * (g_0*h_0)^2) # Thrust-to-fuel mass | ||||||
m_f = T(m_0 * m_c) # final mass | ||||||
T_max = T(3.5 * g_0 * m_0) # maximal rocket thrust | ||||||
D_c = T(1/2 * v_c * (m_0/g_0)) # Drag scaling | ||||||
|
||||||
function f(X) #Objective function | ||||||
S = eltype(X) | ||||||
|
||||||
v = zeros(S, n) # velocity vector | ||||||
h = zeros(S, n) # height vector | ||||||
g = zeros(S, n) # gravity vector | ||||||
m = zeros(S, n) # mass vector | ||||||
D = zeros(S, n) # drag vector | ||||||
|
||||||
v[1] = S(v_0) # velocity vector initialization | ||||||
h[1] = S(h_0) # height vector initialization | ||||||
g[1] = S(g_0) # gravity vector initialization | ||||||
m[1] = S(m_0) # mass vector initialization | ||||||
D[1] = S(D_c*(v_0^2)) # drag vector initialization | ||||||
for k=2:n | ||||||
m[k] = S(m[k - 1] - Δt * X[k - 1] / c) # update mass vector | ||||||
v[k] = S(v[k - 1] + Δt *((X[k - 1] - D[k - 1]) / m[k - 1] - g[k - 1])) # update speed vector | ||||||
h[k] = S(h[k - 1] + Δt * v[k - 1]) # update height vector | ||||||
D[k] = S(D_c*(v[k]^2)*exp(-h_c*(h[k]-h_0)/h_0)) # update drag vector | ||||||
g[k] = S(g_0*(h_0/h[k])^2) # update gravity vector | ||||||
end | ||||||
opt = -h[end] | ||||||
return opt | ||||||
|
||||||
end | ||||||
|
||||||
function constraints(X) | ||||||
|
||||||
S = eltype(X) | ||||||
|
||||||
v = zeros(S, n) | ||||||
h = zeros(S, n) | ||||||
g = zeros(S, n) | ||||||
m = zeros(S, n) | ||||||
D = zeros(S, n) | ||||||
|
||||||
v[1] = S(v_0) # velocity vector initialization | ||||||
h[1] = S(h_0) # height vector initialization | ||||||
g[1] = S(g_0) # gravity vector initialization | ||||||
m[1] = S(m_0) # mass vector initialization | ||||||
D[1] = S(D_c*(v_0^2)) # drag vector initialization | ||||||
for k=2:n | ||||||
m[k] = S(m[k - 1] - Δt * X[k - 1] / c) | ||||||
v[k] = S(v[k - 1] + Δt *((X[k - 1] - D[k - 1]) / m[k - 1] - g[k - 1])) | ||||||
h[k] = S(h[k - 1] + Δt * v[k - 1]) | ||||||
D[k] = S(D_c*(v[k]^2)*exp(-h_c*(h[k]-h_0)/h_0)) | ||||||
end | ||||||
Comment on lines
+71
to
+76
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. See comment above. If it is exactly the same lines of code, maybe you should have it in a function? |
||||||
constraints = vcat(v, h .- h[1], m .- m_f) # constraint vector for velocity, height, mass, thrust | ||||||
return constraints | ||||||
|
||||||
end | ||||||
Δt = T(1/(n-1)) | ||||||
X0 = T_max/2 * ones(T, n) | ||||||
lvar = zeros(T, n) | ||||||
uvar = T_max/2 * ones(T, n) | ||||||
lcon = zeros(T, 3 * n) | ||||||
ucon = T[i ≤ 2n ? T(Inf) : ( T(m_0 - m_f)) for i=1:3n] | ||||||
|
||||||
return ADNLPModel(f, X0, lvar, uvar, constraints, lcon, ucon) | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I would suggest you use a lowercase
Suggested change
|
||||||
end | ||||||
|
||||||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
minimalsurface_meta = Dict( | ||
:nvar => 400, | ||
:variable_nvar => false, | ||
:ncon => 480, | ||
:variable_ncon => false, | ||
:minimize => true, | ||
:name => "minimalsurface", | ||
:has_equalities_only => false, | ||
:has_inequalities_only => false, | ||
:has_bounds => false, | ||
:has_fixed_variables => false, | ||
:objtype => :other, | ||
:contype => :general, | ||
:best_known_lower_bound => -Inf, | ||
:best_known_upper_bound => Inf, | ||
:is_feasible => missing, | ||
:defined_everywhere => missing, | ||
:origin => :unknown, | ||
|
||
) | ||
get_minimalsurface_nvar(; n::Integer = default_nvar, kwargs...) = 400 | ||
get_minimalsurface_ncon(; n::Integer = default_nvar, kwargs...) = 480 | ||
get_minimalsurface_nlin(; n::Integer = default_nvar, kwargs...) = 0 | ||
get_minimalsurface_nnln(; n::Integer = default_nvar, kwargs...) = 480 | ||
get_minimalsurface_nequ(; n::Integer = default_nvar, kwargs...) = 80 | ||
get_minimalsurface_nineq(; n::Integer = default_nvar, kwargs...) = 400 |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
rocket_meta = Dict( | ||
:nvar => 100, | ||
:variable_nvar => true, | ||
:ncon => 300, | ||
:variable_ncon => true, | ||
:minimize => true, | ||
:name => "rocket", | ||
:has_equalities_only => false, | ||
:has_inequalities_only => true, | ||
:has_bounds => true, | ||
:has_fixed_variables => false, | ||
:objtype => :other, | ||
:contype => :general, | ||
:best_known_lower_bound => -Inf, | ||
:best_known_upper_bound => Inf, | ||
:is_feasible => missing, | ||
:defined_everywhere => missing, | ||
:origin => :unknown, | ||
) | ||
get_rocket_nvar(; n::Integer = default_nvar, kwargs...) = 1 * n + 0 | ||
get_rocket_ncon(; n::Integer = default_nvar, kwargs...) = 3 * n + 0 | ||
get_rocket_nlin(; n::Integer = default_nvar, kwargs...) = 0 | ||
get_rocket_nnln(; n::Integer = default_nvar, kwargs...) = 3 * n + 0 | ||
get_rocket_nequ(; n::Integer = default_nvar, kwargs...) = 0 | ||
get_rocket_nineq(; n::Integer = default_nvar, kwargs...) = 3 * n + 0 |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Remove the
S(
as we should not convert the variableX
within a constraint or objective function