Skip to content

Commit

Permalink
Use UnitRange{Int} in dcolors to use less storage
Browse files Browse the repository at this point in the history
  • Loading branch information
amontoison committed Jul 10, 2024
1 parent 2e73c6e commit b11f4a4
Show file tree
Hide file tree
Showing 2 changed files with 30 additions and 30 deletions.
40 changes: 20 additions & 20 deletions src/sparse_hessian.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ struct SparseADHessian{Tag, GT, S, T} <: ADNLPModels.ADBackend
colptr::Vector{Int}
colors::Vector{Int}
ncolors::Int
dcolors::Dict{Int, Vector{Int}}
dcolors::Dict{Int, Vector{UnitRange{Int}}}
res::S
lz::Vector{ForwardDiff.Dual{Tag, T, 1}}
glz::Vector{ForwardDiff.Dual{Tag, T, 1}}
Expand Down Expand Up @@ -39,11 +39,10 @@ function SparseADHessian(
colptr = trilH.colptr

# The indices of the nonzero elements in `vals` that will be processed by color `c` are stored in `dcolors[c]`.
dcolors = Dict{Int, Vector{Int}}(i => Int[] for i=1:ncolors)
dcolors = Dict(i => UnitRange{Int}[] for i=1:ncolors)
for (i, color) in enumerate(colors)
for k = colptr[i]:(colptr[i + 1] - 1)
push!(dcolors[color], k)
end
range_vals = colptr[i]:(colptr[i + 1] - 1)
push!(dcolors[color], range_vals)
end

# prepare directional derivatives
Expand Down Expand Up @@ -83,7 +82,7 @@ struct SparseReverseADHessian{T, S, Tagf, F, Tagψ, P} <: ADNLPModels.ADBackend
colptr::Vector{Int}
colors::Vector{Int}
ncolors::Int
dcolors::Dict{Int, Vector{Int}}
dcolors::Dict{Int, Vector{UnitRange{Int}}}
res::S
z::Vector{ForwardDiff.Dual{Tagf, T, 1}}
gz::Vector{ForwardDiff.Dual{Tagf, T, 1}}
Expand Down Expand Up @@ -120,11 +119,10 @@ function SparseReverseADHessian(
colptr = trilH.colptr

# The indices of the nonzero elements in `vals` that will be processed by color `c` are stored in `dcolors[c]`.
dcolors = Dict{Int, Vector{Int}}(i => Int[] for i=1:ncolors)
dcolors = Dict(i => UnitRange{Int}[] for i=1:ncolors)
for (i, color) in enumerate(colors)
for k = colptr[i]:(colptr[i + 1] - 1)
push!(dcolors[color], k)
end
range_vals = colptr[i]:(colptr[i + 1] - 1)
push!(dcolors[color], range_vals)
end

# prepare directional derivatives
Expand Down Expand Up @@ -233,11 +231,12 @@ function sparse_hess_coord!(
ForwardDiff.extract_derivative!(Tag, b.Hvp, b.glz)
b.res .= view(b.Hvp, (ncon + 1):(ncon + nvar))

# Update the vector vals
index_vals = b.dcolors[icol]
for k in index_vals
row = b.rowval[k]
vals[k] = b.res[row]
# Store in `vals` the nonzeros of each column of the Hessian computed with color `icol`
for range_vals in b.dcolors[icol]
for k in range_vals
row = b.rowval[k]
vals[k] = b.res[row]
end
end
end

Expand Down Expand Up @@ -269,11 +268,12 @@ function sparse_hess_coord!(
ForwardDiff.extract_derivative!(Tagψ, b.Hv_temp, b.gzψ)
b.res .+= b.Hv_temp

# Update the vector vals
index_vals = b.dcolors[icol]
for k in index_vals
row = b.rowval[k]
vals[k] = b.res[row]
# Store in `vals` the nonzeros of each column of the Hessian computed with color `icol`
for range_vals in b.dcolors[icol]
for k in range_vals
row = b.rowval[k]
vals[k] = b.res[row]
end
end
end

Expand Down
20 changes: 10 additions & 10 deletions src/sparse_jacobian.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ struct SparseADJacobian{T, Tag, S} <: ADBackend
colptr::Vector{Int}
colors::Vector{Int}
ncolors::Int
dcolors::Dict{Int, Vector{Int}}
dcolors::Dict{Int, Vector{UnitRange{Int}}}
z::Vector{ForwardDiff.Dual{Tag, T, 1}}
cz::Vector{ForwardDiff.Dual{Tag, T, 1}}
res::S
Expand Down Expand Up @@ -33,11 +33,10 @@ function SparseADJacobian(
colptr = J.colptr

# The indices of the nonzero elements in `vals` that will be processed by color `c` are stored in `dcolors[c]`.
dcolors = Dict{Int, Vector{Int}}(i => Int[] for i=1:ncolors)
dcolors = Dict(i => UnitRange{Int}[] for i=1:ncolors)
for (i, color) in enumerate(colors)
for k = colptr[i]:(colptr[i + 1] - 1)
push!(dcolors[color], k)
end
range_vals = colptr[i]:(colptr[i + 1] - 1)
push!(dcolors[color], range_vals)
end

tag = ForwardDiff.Tag{typeof(c!), T}
Expand Down Expand Up @@ -81,11 +80,12 @@ function sparse_jac_coord!(
ℓ!(b.cz, b.z) # c!(cz, x + ε * v)
ForwardDiff.extract_derivative!(Tag, b.res, b.cz) # ∇c!(cx, x)ᵀv

# Update the vector vals
index_vals = b.dcolors[icol]
for k in index_vals
row = b.rowval[k]
vals[k] = b.res[row]
# Store in `vals` the nonzeros of each column of the Jacobian computed with color `icol`
for range_vals in b.dcolors[icol]
for k in range_vals
row = b.rowval[k]
vals[k] = b.res[row]
end
end
end
return vals
Expand Down

0 comments on commit b11f4a4

Please sign in to comment.