Skip to content

Add open and mixed open/closed intervals #26

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 19 commits into from
Sep 1, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,18 @@ julia> 1.5±1
0.5..2.5
```

Similarly, you can construct `OpenInterval`s and `Interval{:open,:closed}`s, and `Interval{:closed,:open}`:
```julia
julia> OpenInterval{Float64}(1,3)
1.0..3.0 (open)

julia> OpenInterval(0.5..2.5)
0.5..2.5 (open)

julia> Interval{:open,:closed}(1,3)
1..3 (open–closed)
```

The `±` operator may be typed as `\pm<TAB>` (using Julia's LaTeX
syntax tab-completion).

Expand All @@ -50,6 +62,9 @@ true
julia> 0 ∈ 1.5±1
false

julia> 1 ∈ OpenInterval(0..1)
false

julia> intersect(1..5, 3..7) # can also use `a ∩ b`, where the symbol is \cap<TAB>
3..5

Expand Down
2 changes: 1 addition & 1 deletion REQUIRE
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
julia 0.6
Compat 0.49
Compat 1.0
191 changes: 179 additions & 12 deletions src/IntervalSets.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,27 +6,65 @@ using Base: @pure
import Base: eltype, convert, show, in, length, isempty, isequal, issubset, ==, hash,
union, intersect, minimum, maximum, extrema, range, ⊇

using Compat.Statistics
import Compat.Statistics: mean


using Compat
using Compat.Dates

export AbstractInterval, ClosedInterval, ⊇, .., ±, ordered, width
export AbstractInterval, Interval, OpenInterval, ClosedInterval,
⊇, .., ±, ordered, width, duration, leftendpoint, rightendpoint, endpoints,
isclosed, isleftclosed, isrightclosed, isleftopen, isrightopen, closedendpoints,
infimum, supremum

"""
A subtype of `Domain{T}` represents a subset of type `T`, that provides `in`.
"""
abstract type Domain{T} end
"""
A subtype of `AbstractInterval{T}` represents an interval subset of type `T`, that provides
`endpoints`, `closedendpoints`.
"""
abstract type AbstractInterval{T} <: Domain{T} end


"A tuple containing the left and right endpoints of the interval."
endpoints(d::AI) where AI<:AbstractInterval = error("Override endpoints(::$(AI))")

"The left endpoint of the interval."
leftendpoint(d::AbstractInterval) = endpoints(d)[1]

"The right endpoint of the interval."
rightendpoint(d::AbstractInterval) = endpoints(d)[2]

"A tuple of `Bool`'s encoding whether the left/right endpoints are closed."
closedendpoints(d::AI) where AI<:AbstractInterval = error("Override closedendpoints(::$(AI))")

"Is the interval closed at the left endpoint?"
isleftclosed(d::AbstractInterval) = closedendpoints(d)[1]

"Is the interval closed at the right endpoint?"
isrightclosed(d::AbstractInterval) = closedendpoints(d)[2]

# open_left and open_right are implemented in terms of closed_* above, so those
# are the only ones that should be implemented for specific intervals
"Is the interval open at the left endpoint?"
isleftopen(d::AbstractInterval) = !isleftclosed(d)

abstract type AbstractInterval{T} end
"Is the interval open at the right endpoint?"
isrightopen(d::AbstractInterval) = !isrightclosed(d)

include("closed.jl")
# Only closed if closed at both endpoints, and similar for open
isclosed(d::AbstractInterval) = isleftclosed(d) && isrightclosed(d)
isopen(d::AbstractInterval) = isleftopen(d) && isrightopen(d)

eltype(::Type{AbstractInterval{T}}) where {T} = T
@pure eltype(::Type{I}) where {I<:AbstractInterval} = eltype(supertype(I))

convert(::Type{I}, i::I) where {I<:AbstractInterval} = i
function convert(::Type{I}, i::AbstractInterval) where I<:AbstractInterval
T = eltype(I)
I(convert(T, i.left), convert(T, i.right))
end
function convert(::Type{I}, r::AbstractRange) where I<:AbstractInterval
T = eltype(I)
I(convert(T, minimum(r)), convert(T, maximum(r)))
end
convert(::Type{AbstractInterval}, i::AbstractInterval) = i
convert(::Type{AbstractInterval{T}}, i::AbstractInterval{T}) where T = i


ordered(a::T, b::T) where {T} = ifelse(a < b, (a, b), (b, a))
ordered(a, b) = ordered(promote(a, b)...)
Expand All @@ -36,4 +74,133 @@ _checked_conversion(::Type{T}, a::T, b::T) where {T} = a, b
_checked_conversion(::Type{Any}, a, b) = throw(ArgumentError("$a and $b promoted to type Any"))
_checked_conversion(::Type{T}, a, b) where {T} = throw(ArgumentError("$a and $b are not both of type $T"))

function infimum(d::AbstractInterval{T}) where T
a = leftendpoint(d)
b = rightendpoint(d)
a > b && throw(ArgumentError("Infimum not defined for empty intervals"))
a
end

function supremum(d::AbstractInterval{T}) where T
a = leftendpoint(d)
b = rightendpoint(d)
a > b && throw(ArgumentError("Supremum not defined for empty intervals"))
b
end

mean(d::AbstractInterval) = (leftendpoint(d) + rightendpoint(d))/2

issubset(A::AbstractInterval, B::AbstractInterval) = ((leftendpoint(A) in B) && (rightendpoint(A) in B)) || isempty(A)
⊇(A::AbstractInterval, B::AbstractInterval) = issubset(B, A)
if VERSION < v"1.1.0-DEV.123"
issubset(x, B::AbstractInterval) = issubset(convert(AbstractInterval, x), B)
end

"""
w = width(iv)

Calculate the width (max-min) of interval `iv`. Note that for integers
`l` and `r`, `width(l..r) = length(l:r) - 1`.
"""
function width(A::AbstractInterval)
_width = rightendpoint(A) - leftendpoint(A)
max(zero(_width), _width) # this works when T is a Date
end

"""
A subtype of `TypedEndpointsInterval{L,R,T}` where `L` and `R` are `:open` or `:closed`,
that represents an interval subset of type `T`, and provides `endpoints`.
"""
abstract type TypedEndpointsInterval{L,R,T} <: AbstractInterval{T} end

closedendpoints(d::TypedEndpointsInterval{:closed,:closed}) = (true,true)
closedendpoints(d::TypedEndpointsInterval{:closed,:open}) = (true,false)
closedendpoints(d::TypedEndpointsInterval{:open,:closed}) = (false,true)
closedendpoints(d::TypedEndpointsInterval{:open,:open}) = (false,false)


in(v, I::TypedEndpointsInterval{:closed,:closed}) = leftendpoint(I) ≤ v ≤ rightendpoint(I)
in(v, I::TypedEndpointsInterval{:open,:open}) = leftendpoint(I) < v < rightendpoint(I)
in(v, I::TypedEndpointsInterval{:closed,:open}) = leftendpoint(I) ≤ v < rightendpoint(I)
in(v, I::TypedEndpointsInterval{:open,:closed}) = leftendpoint(I) < v ≤ rightendpoint(I)

in(a::AbstractInterval, b::TypedEndpointsInterval{:closed,:closed}) =
(leftendpoint(a) ≥ leftendpoint(b)) & (rightendpoint(a) ≤ rightendpoint(b))
in(a::TypedEndpointsInterval{:open,:open}, b::TypedEndpointsInterval{:open,:open}) =
(leftendpoint(a) ≥ leftendpoint(b)) & (rightendpoint(a) ≤ rightendpoint(b))
in(a::TypedEndpointsInterval{:closed,:open}, b::TypedEndpointsInterval{:open,:open}) =
(leftendpoint(a) > leftendpoint(b)) & (rightendpoint(a) ≤ rightendpoint(b))
in(a::TypedEndpointsInterval{:open,:closed}, b::TypedEndpointsInterval{:open,:open}) =
(leftendpoint(a) ≥ leftendpoint(b)) & (rightendpoint(a) < rightendpoint(b))
in(a::TypedEndpointsInterval{:closed,:closed}, b::TypedEndpointsInterval{:open,:open}) =
(leftendpoint(a) > leftendpoint(b)) & (rightendpoint(a) < rightendpoint(b))
in(a::TypedEndpointsInterval{:closed}, b::TypedEndpointsInterval{:open,:closed}) =
(leftendpoint(a) > leftendpoint(b)) & (rightendpoint(a) ≤ rightendpoint(b))
in(a::TypedEndpointsInterval{:open}, b::TypedEndpointsInterval{:open,:closed}) =
(leftendpoint(a) ≥ leftendpoint(b)) & (rightendpoint(a) ≤ rightendpoint(b))
in(a::TypedEndpointsInterval{L,:closed}, b::TypedEndpointsInterval{:closed,:open}) where L = (leftendpoint(a) ≥ leftendpoint(b)) & (rightendpoint(a) < rightendpoint(b))
in(a::TypedEndpointsInterval{L,:open}, b::TypedEndpointsInterval{:closed,:open}) where L = (leftendpoint(a) ≥ leftendpoint(b)) & (rightendpoint(a) ≤ rightendpoint(b))

isempty(A::TypedEndpointsInterval{:closed,:closed}) = leftendpoint(A) > rightendpoint(A)
isempty(A::TypedEndpointsInterval) = leftendpoint(A) ≥ rightendpoint(A)

isequal(A::TypedEndpointsInterval{L,R}, B::TypedEndpointsInterval{L,R}) where {L,R} = (isequal(leftendpoint(A), leftendpoint(B)) & isequal(rightendpoint(A), rightendpoint(B))) | (isempty(A) & isempty(B))
isequal(A::TypedEndpointsInterval, B::TypedEndpointsInterval) = isempty(A) & isempty(B)

==(A::TypedEndpointsInterval{L,R}, B::TypedEndpointsInterval{L,R}) where {L,R} = (leftendpoint(A) == leftendpoint(B) && rightendpoint(A) == rightendpoint(B)) || (isempty(A) && isempty(B))
==(A::TypedEndpointsInterval, B::TypedEndpointsInterval) = isempty(A) && isempty(B)

const _interval_hash = UInt == UInt64 ? 0x1588c274e0a33ad4 : 0x1e3f7252

hash(I::TypedEndpointsInterval, h::UInt) = hash(leftendpoint(I), hash(rightendpoint(I), hash(_interval_hash, h)))

minimum(d::TypedEndpointsInterval{:closed}) = infimum(d)
minimum(d::TypedEndpointsInterval{:open}) = throw(ArgumentError("$d is open on the left. Use infimum."))
maximum(d::TypedEndpointsInterval{L,:closed}) where L = supremum(d)
maximum(d::TypedEndpointsInterval{L,:open}) where L = throw(ArgumentError("$d is open on the right. Use supremum."))

extrema(I::TypedEndpointsInterval) = (infimum(I), supremum(I))

# Open and closed at endpoints
isleftclosed(d::TypedEndpointsInterval{:closed}) = true
isleftclosed(d::TypedEndpointsInterval{:open}) = false
isrightclosed(d::TypedEndpointsInterval{L,:closed}) where {L} = true
isrightclosed(d::TypedEndpointsInterval{L,:open}) where {L} = false

# UnitRange construction
# The third is the one we want, but the first two are needed to resolve ambiguities
Base.Slice{T}(i::TypedEndpointsInterval{:closed,:closed,I}) where {T<:AbstractUnitRange,I<:Integer} =
Base.Slice{T}(minimum(i):maximum(i))
function Base.OneTo{T}(i::TypedEndpointsInterval{:closed,:closed,I}) where {T<:Integer,I<:Integer}
@noinline throwstart(i) = throw(ArgumentError("smallest element must be 1, got $(minimum(i))"))
minimum(i) == 1 || throwstart(i)
Base.OneTo{T}(maximum(i))
end
UnitRange{T}(i::TypedEndpointsInterval{:closed,:closed,I}) where {T<:Integer,I<:Integer} = UnitRange{T}(minimum(i), maximum(i))
UnitRange(i::TypedEndpointsInterval{:closed,:closed,I}) where {I<:Integer} = UnitRange{I}(i)
range(i::TypedEndpointsInterval{:closed,:closed,I}) where {I<:Integer} = UnitRange{I}(i)

"""
duration(iv)

calculates the the total number of integers or dates of an integer or date
valued interval. For example, `duration(0..1)` is 2, while `width(0..1)` is 1.
"""
duration(A::TypedEndpointsInterval{:closed,:closed,T}) where {T<:Integer} = max(0, Int(A.right - A.left) + 1)
duration(A::TypedEndpointsInterval{:closed,:closed,Date}) = max(0, Dates.days(A.right - A.left) + 1)

include("interval.jl")

# convert numbers to intervals
convert(::Type{AbstractInterval}, x::Number) = x..x
convert(::Type{AbstractInterval{T}}, x::Number) where T =
convert(AbstractInterval{T}, convert(AbstractInterval, x))
convert(::Type{TypedEndpointsInterval{:closed,:closed}}, x::Number) = x..x
convert(::Type{TypedEndpointsInterval{:closed,:closed,T}}, x::Number) where T =
convert(AbstractInterval{T}, convert(AbstractInterval, x))
convert(::Type{ClosedInterval}, x::Number) = x..x
convert(::Type{ClosedInterval{T}}, x::Number) where T =
convert(AbstractInterval{T}, convert(AbstractInterval, x))
Comment on lines +194 to +203
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do we need these conversion methods? x-ref:#97



end # module
119 changes: 0 additions & 119 deletions src/closed.jl

This file was deleted.

Loading