ZarrDatasets.jl is a julia package to read Zarr datasets based on the native julia implementation Zarr.jl using the CommonDataModel.jl interface.
In the following example, data from Copernicus Marine Service is loaded using ZarrDatasets
and a subset
is saved as a NetCDF file:
using CommonDataModel: @select
using Dates
using NCDatasets
using STAC
using ZarrDatasets
# get the data set URL from product_id and dataset_id and the STAC catalog
function copernicus_marine_catalog(product_id,dataset_id,
stac_url = "https://stac.marine.copernicus.eu/metadata/catalog.stac.json",
asset = "timeChunked")
cat = STAC.Catalog(stac_url);
item_canditates = filter(startswith(dataset_id),collect(keys(cat[product_id].items)))
# use last version per default
dataset_version_id = sort(item_canditates)[end]
item = cat[product_id].items[dataset_version_id]
return href(item.assets[asset])
end
product_id = "MEDSEA_MULTIYEAR_PHY_006_004"
dataset_id = "med-cmcc-ssh-rean-d"
url = copernicus_marine_catalog(product_id,dataset_id)
ds = ZarrDataset(url);
# longitude, latitude and time are the coordinate variables defined in the
# zarr dataset
ds_sub = @select(ds, time == DateTime(2001,1,1)
&& 7 <= longitude <= 11
&& 42.3 <= latitude <= 44.5)
# save selection as a NetCDF file
NCDataset("$(dataset_id)_selection.nc","c") do ds_nc
write(ds_nc,ds_sub)
end
It's also simple to wrap an existing Zarr array, or a manually constructed Zarr store, in a ZarrDataset
:
zg = zopen("/path/to/zarr")
zd = ZarrDataset(zg)
and you can pass a constructed Zarr.AbstractStore
similarly.