Skip to content

Mixed-mode sparse Jacobians #554

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 16 commits into from
Nov 8, 2024
6 changes: 3 additions & 3 deletions DifferentiationInterface/Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "DifferentiationInterface"
uuid = "a0c0ee7d-e4b9-4e03-894e-1c5f64a51d63"
authors = ["Guillaume Dalle", "Adrian Hill"]
version = "0.6.21"
version = "0.6.22"

[deps]
ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b"
Expand Down Expand Up @@ -61,7 +61,7 @@ ReverseDiff = "1.15.1"
SparseArrays = "<0.0.1,1"
SparseConnectivityTracer = "0.5.0,0.6"
StaticArrays = "1.9.7"
SparseMatrixColorings = "0.4.5"
SparseMatrixColorings = "0.4.9"
Symbolics = "5.27.1, 6"
Tracker = "0.2.33"
Zygote = "0.6.69"
Expand Down Expand Up @@ -99,4 +99,4 @@ Tracker = "9f7883ad-71c0-57eb-9f7f-b5c9e6d3789c"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[targets]
test = ["ADTypes", "Aqua", "ComponentArrays", "DataFrames", "ExplicitImports", "ForwardDiff", "JET", "JLArrays", "JuliaFormatter", "Pkg", "Random", "SparseArrays", "SparseConnectivityTracer", "SparseMatrixColorings", "StableRNGs", "StaticArrays", "Test"]
test = ["ADTypes", "Aqua", "ComponentArrays", "DataFrames", "ExplicitImports", "ForwardDiff", "JET", "JLArrays", "JuliaFormatter", "Pkg", "Random", "SparseArrays", "SparseConnectivityTracer", "SparseMatrixColorings", "StableRNGs", "StaticArrays", "Test", "Zygote"]
1 change: 1 addition & 0 deletions DifferentiationInterface/docs/src/api.md
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,7 @@ jacobian
jacobian!
value_and_jacobian
value_and_jacobian!
MixedMode
```

## Second order
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,8 @@ using DifferentiationInterface:
PushforwardPerformance,
inner,
outer,
forward_backend,
reverse_backend,
multibasis,
pick_batchsize,
pushforward_performance,
Expand All @@ -33,13 +35,32 @@ using SparseMatrixColorings:
coloring,
column_colors,
row_colors,
ncolors,
column_groups,
row_groups,
sparsity_pattern,
decompress!
import SparseMatrixColorings as SMC

function fy_with_contexts(f, contexts::Vararg{Context,C}) where {C}
return (with_contexts(f, contexts...),)
end

function fy_with_contexts(f!, y, contexts::Vararg{Context,C}) where {C}
return (with_contexts(f!, contexts...), y)
end

abstract type SparseJacobianPrep <: JacobianPrep end

SMC.sparsity_pattern(prep::SparseJacobianPrep) = sparsity_pattern(prep.coloring_result)
SMC.column_colors(prep::SparseJacobianPrep) = column_colors(prep.coloring_result)
SMC.column_groups(prep::SparseJacobianPrep) = column_groups(prep.coloring_result)
SMC.row_colors(prep::SparseJacobianPrep) = row_colors(prep.coloring_result)
SMC.row_groups(prep::SparseJacobianPrep) = row_groups(prep.coloring_result)
SMC.ncolors(prep::SparseJacobianPrep) = ncolors(prep.coloring_result)

include("jacobian.jl")
include("jacobian_mixed.jl")
include("hessian.jl")

end
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ end
SMC.sparsity_pattern(prep::SparseHessianPrep) = sparsity_pattern(prep.coloring_result)
SMC.column_colors(prep::SparseHessianPrep) = column_colors(prep.coloring_result)
SMC.column_groups(prep::SparseHessianPrep) = column_groups(prep.coloring_result)
SMC.ncolors(prep::SparseHessianPrep) = ncolors(prep.coloring_result)

## Hessian, one argument

Expand Down
Original file line number Diff line number Diff line change
@@ -1,21 +1,5 @@
function fy_with_contexts(f, contexts::Vararg{Context,C}) where {C}
return (with_contexts(f, contexts...),)
end

function fy_with_contexts(f!, y, contexts::Vararg{Context,C}) where {C}
return (with_contexts(f!, contexts...), y)
end

## Preparation

abstract type SparseJacobianPrep <: JacobianPrep end

SMC.sparsity_pattern(prep::SparseJacobianPrep) = sparsity_pattern(prep.coloring_result)
SMC.column_colors(prep::SparseJacobianPrep) = column_colors(prep.coloring_result)
SMC.column_groups(prep::SparseJacobianPrep) = column_groups(prep.coloring_result)
SMC.row_colors(prep::SparseJacobianPrep) = row_colors(prep.coloring_result)
SMC.row_groups(prep::SparseJacobianPrep) = row_groups(prep.coloring_result)

struct PushforwardSparseJacobianPrep{
BS<:BatchSizeSettings,
C<:AbstractColoringResult{:nonsymmetric,:column},
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,231 @@
## Preparation

struct MixedModeSparseJacobianPrep{
BSf<:BatchSizeSettings,
BSr<:BatchSizeSettings,
C<:AbstractColoringResult{:nonsymmetric,:bidirectional},
M<:AbstractMatrix{<:Real},
Sf<:Vector{<:NTuple},
Sr<:Vector{<:NTuple},
Rf<:Vector{<:NTuple},
Rr<:Vector{<:NTuple},
Ef<:PushforwardPrep,
Er<:PullbackPrep,
} <: SparseJacobianPrep
batch_size_settings_forward::BSf
batch_size_settings_reverse::BSr
coloring_result::C
compressed_matrix_forward::M
compressed_matrix_reverse::M
batched_seeds_forward::Sf
batched_seeds_reverse::Sr
batched_results_forward::Rf
batched_results_reverse::Rr
pushforward_prep::Ef
pullback_prep::Er
end

function DI.prepare_jacobian(
f::F, backend::AutoSparse{<:MixedMode}, x, contexts::Vararg{Context,C}
) where {F,C}
y = f(x, map(unwrap, contexts)...)
return _prepare_mixed_sparse_jacobian_aux(y, (f,), backend, x, contexts...)
end

function DI.prepare_jacobian(
f!::F, y, backend::AutoSparse{<:MixedMode}, x, contexts::Vararg{Context,C}
) where {F,C}
return _prepare_mixed_sparse_jacobian_aux(y, (f!, y), backend, x, contexts...)
end

function _prepare_mixed_sparse_jacobian_aux(
y, f_or_f!y::FY, backend::AutoSparse{<:MixedMode}, x, contexts::Vararg{Context,C}
) where {FY,C}
dense_backend = dense_ad(backend)
sparsity = jacobian_sparsity(
fy_with_contexts(f_or_f!y..., contexts...)..., x, sparsity_detector(backend)
)
problem = ColoringProblem{:nonsymmetric,:bidirectional}()
coloring_result = coloring(
sparsity,
problem,
coloring_algorithm(backend);
decompression_eltype=promote_type(eltype(x), eltype(y)),
)

Nf = length(column_groups(coloring_result))
Nr = length(row_groups(coloring_result))
batch_size_settings_forward = pick_batchsize(forward_backend(dense_backend), Nf)
batch_size_settings_reverse = pick_batchsize(reverse_backend(dense_backend), Nr)

return _prepare_mixed_sparse_jacobian_aux_aux(
batch_size_settings_forward,
batch_size_settings_reverse,
coloring_result,
y,
f_or_f!y,
backend,
x,
contexts...,
)
end

function _prepare_mixed_sparse_jacobian_aux_aux(
batch_size_settings_forward::BatchSizeSettings{Bf},
batch_size_settings_reverse::BatchSizeSettings{Br},
coloring_result::AbstractColoringResult{:nonsymmetric,:bidirectional},
y,
f_or_f!y::FY,
backend::AutoSparse{<:MixedMode},
x,
contexts::Vararg{Context,C},
) where {Bf,Br,FY,C}
Nf, Af = batch_size_settings_forward.N, batch_size_settings_forward.A
Nr, Ar = batch_size_settings_reverse.N, batch_size_settings_reverse.A

dense_backend = dense_ad(backend)

groups_forward = column_groups(coloring_result)
groups_reverse = row_groups(coloring_result)

seeds_forward = [
multibasis(backend, x, eachindex(x)[group]) for group in groups_forward
]
seeds_reverse = [
multibasis(backend, y, eachindex(y)[group]) for group in groups_reverse
]

compressed_matrix_forward = stack(_ -> vec(similar(y)), groups_forward; dims=2)
compressed_matrix_reverse = stack(_ -> vec(similar(x)), groups_reverse; dims=1)

batched_seeds_forward = [
ntuple(b -> seeds_forward[1 + ((a - 1) * Bf + (b - 1)) % Nf], Val(Bf)) for a in 1:Af
]
batched_seeds_reverse = [
ntuple(b -> seeds_reverse[1 + ((a - 1) * Br + (b - 1)) % Nr], Val(Br)) for a in 1:Ar
]

batched_results_forward = [
ntuple(b -> similar(y), Val(Bf)) for _ in batched_seeds_forward
]
batched_results_reverse = [
ntuple(b -> similar(x), Val(Br)) for _ in batched_seeds_reverse
]

pushforward_prep = prepare_pushforward(
f_or_f!y...,
forward_backend(dense_backend),
x,
batched_seeds_forward[1],
contexts...,
)
pullback_prep = prepare_pullback(
f_or_f!y...,
reverse_backend(dense_backend),
x,
batched_seeds_reverse[1],
contexts...,
)

return MixedModeSparseJacobianPrep(
batch_size_settings_forward,
batch_size_settings_reverse,
coloring_result,
compressed_matrix_forward,
compressed_matrix_reverse,
batched_seeds_forward,
batched_seeds_reverse,
batched_results_forward,
batched_results_reverse,
pushforward_prep,
pullback_prep,
)
end

## Common auxiliaries

function _sparse_jacobian_aux!(
f_or_f!y::FY,
jac,
prep::MixedModeSparseJacobianPrep{<:BatchSizeSettings{Bf},<:BatchSizeSettings{Br}},
backend::AutoSparse,
x,
contexts::Vararg{Context,C},
) where {FY,Bf,Br,C}
(;
batch_size_settings_forward,
batch_size_settings_reverse,
coloring_result,
compressed_matrix_forward,
compressed_matrix_reverse,
batched_seeds_forward,
batched_seeds_reverse,
batched_results_forward,
batched_results_reverse,
pushforward_prep,
pullback_prep,
) = prep

dense_backend = dense_ad(backend)
Nf = batch_size_settings_forward.N
Nr = batch_size_settings_reverse.N

pushforward_prep_same = prepare_pushforward_same_point(
f_or_f!y...,
pushforward_prep,
forward_backend(dense_backend),
x,
batched_seeds_forward[1],
contexts...,
)
pullback_prep_same = prepare_pullback_same_point(
f_or_f!y...,
pullback_prep,
reverse_backend(dense_backend),
x,
batched_seeds_reverse[1],
contexts...,
)

for a in eachindex(batched_seeds_forward, batched_results_forward)
pushforward!(
f_or_f!y...,
batched_results_forward[a],
pushforward_prep_same,
forward_backend(dense_backend),
x,
batched_seeds_forward[a],
contexts...,
)

for b in eachindex(batched_results_forward[a])
copyto!(
view(compressed_matrix_forward, :, 1 + ((a - 1) * Bf + (b - 1)) % Nf),
vec(batched_results_forward[a][b]),
)
end
end

for a in eachindex(batched_seeds_reverse, batched_results_reverse)
pullback!(
f_or_f!y...,
batched_results_reverse[a],
pullback_prep_same,
reverse_backend(dense_backend),
x,
batched_seeds_reverse[a],
contexts...,
)

for b in eachindex(batched_results_reverse[a])
copyto!(
view(compressed_matrix_reverse, 1 + ((a - 1) * Br + (b - 1)) % Nr, :),
vec(batched_results_reverse[a][b]),
)
end
end

decompress!(jac, compressed_matrix_reverse, compressed_matrix_forward, coloring_result)

return jac
end
3 changes: 2 additions & 1 deletion DifferentiationInterface/src/DifferentiationInterface.jl
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,7 @@ using LinearAlgebra: dot

include("compat.jl")

include("first_order/mixed_mode.jl")
include("second_order/second_order.jl")

include("utils/prep.jl")
Expand Down Expand Up @@ -66,7 +67,7 @@ include("misc/zero_backends.jl")
## Exported

export Context, Constant, Cache
export SecondOrder
export MixedMode, SecondOrder

export value_and_pushforward!, value_and_pushforward
export value_and_pullback!, value_and_pullback
Expand Down
27 changes: 27 additions & 0 deletions DifferentiationInterface/src/first_order/mixed_mode.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
"""
MixedMode

Combination of a forward and a reverse mode backend for mixed-mode Jacobian computation.

!!! danger
`MixedMode` backends only support [`jacobian`](@ref) and its variants.

# Constructor

MixedMode(forward_backend, reverse_backend)
"""
struct MixedMode{F<:AbstractADType,R<:AbstractADType} <: AbstractADType
forward::F
reverse::R
function MixedMode(forward::AbstractADType, reverse::AbstractADType)
@assert pushforward_performance(forward) isa PushforwardFast
@assert pullback_performance(reverse) isa PullbackFast
return new{typeof(forward),typeof(reverse)}(forward, reverse)
end
end

forward_backend(m::MixedMode) = m.forward
reverse_backend(m::MixedMode) = m.reverse

struct ForwardAndReverseMode <: ADTypes.AbstractMode end
ADTypes.mode(::MixedMode) = ForwardAndReverseMode()
6 changes: 6 additions & 0 deletions DifferentiationInterface/src/utils/batchsize.jl
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,12 @@ function pick_batchsize(backend::AbstractADType, x_or_N::Union{AbstractArray,Int
"You should select the batch size for the dense backend of $backend"
),
)
elseif backend isa MixedMode
throw(
ArgumentError(
"You should select the batch size for the forward or reverse backend of $backend",
),
)
else
return BatchSizeSettings(backend, x_or_N)
end
Expand Down
Loading
Loading