Skip to content

Analysis for predicting CRP from ingredient level food tree

Notifications You must be signed in to change notification settings

JulesLarke-USDA/wweia_crp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WWEIA CRP

This repository contains the scripts and data used for reproducing results and visualizations

Use and Requirements

  1. Clone the repository from the terminal:
    git clone https://github.com/JulesLarke-USDA/wweia_crp
    cd wweia_crp
  2. Create a conda environment for running python scripts from src/wweia_crp.yml:
    cd doc
    conda env create -f wweia_crp.yml
  • NOTE: if running on Apple Silicon you will need to run CONDA_SUBDIR=osx-64 conda env create -f wweia_crp.yml
  1. Activate the conda environment:
    conda activate wweia_crp
  • NOTE: if running on Apple Silicon you will need to run
    conda env config vars set CONDA_SUBDIR=osx-64
    Then conda deactivate and conda activate wweia_crp
  1. R scripts are run with a local R server within a Docker (v4.32.0) container for version control purposes
  • Install docker and navigate to the wweia_crp directory
  • Then run docker build -t wweia_crp:1.0 .
  • When finished run docker run --rm -it -p 8787:8787 -e PASSWORD=yourpasswordhere -v `pwd`:/home/docker/ wweia_crp:1.0
  • Open a web browser and navigate to http://localhost:8787/
  • Login to the RStudio server
    • username: rstudio
    • password: yourpasswordhere
  • Change directories from the R console: setwd("/home/docker")
  • Navigate to the currect working directory in the Files tab: Files > More > Go To Working Directory image
  1. Run code seqentially starting from src/00

Required software

  • Miniconda
  • R 4.1.0
  • TaxaHFE
  • Docker 4.32.0

About

Analysis for predicting CRP from ingredient level food tree

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published