Skip to content

2025-06-23-minilm_l6_v2_en #14609

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: models_hub
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
120 changes: 120 additions & 0 deletions docs/_posts/prabod/2025-06-23-minilm_l6_v2_en.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
---
layout: model
title: MiniLM L6 V2
author: John Snow Labs
name: minilm_l6_v2
date: 2025-06-23
tags: [en, open_source, openvino]
task: Embeddings
language: en
edition: Spark NLP 5.5.1
spark_version: 3.0
supported: true
engine: openvino
annotator: MiniLMEmbeddings
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Sentence embeddings using MiniLM.

MiniLM, a lightweight and efficient sentence embedding model that can generate text embeddings
for various NLP tasks (e.g., classification, retrieval, clustering, text evaluation, etc.)

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/minilm_l6_v2_en_5.5.1_3.0_1750674121132.zip){:.button.button-orange.button-orange-trans.arr.button-icon}
[Copy S3 URI](s3://auxdata.johnsnowlabs.com/public/models/minilm_l6_v2_en_5.5.1_3.0_1750674121132.zip){:.button.button-orange.button-orange-trans.button-icon.button-copy-s3}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
import sparknlp
from sparknlp.base import *
from sparknlp.annotator import *
from pyspark.ml import Pipeline

documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")
embeddings = MiniLMEmbeddings.pretrained() \
.setInputCols(["document"]) \
.setOutputCol("minilm_embeddings")
embeddingsFinisher = EmbeddingsFinisher() \
.setInputCols(["minilm_embeddings"]) \
.setOutputCols("finished_embeddings") \
.setOutputAsVector(True)
pipeline = Pipeline().setStages([
documentAssembler,
embeddings,
embeddingsFinisher
])

data = spark.createDataFrame([["This is a sample sentence for embedding generation.",
"Another example sentence to demonstrate MiniLM embeddings.",
]]).toDF("text")
result = pipeline.fit(data).transform(data)
result.selectExpr("explode(finished_embeddings) as result").show(5, 80)
```
```scala
import spark.implicits._
import com.johnsnowlabs.nlp.base.DocumentAssembler
import com.johnsnowlabs.nlp.annotators.Tokenizer
import com.johnsnowlabs.nlp.embeddings.MiniLMEmbeddings
import com.johnsnowlabs.nlp.EmbeddingsFinisher
import org.apache.spark.ml.Pipeline

val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val embeddings = MiniLMEmbeddings.pretrained("minilm_l6_v2", "en")
.setInputCols("document")
.setOutputCol("minilm_embeddings")

val embeddingsFinisher = new EmbeddingsFinisher()
.setInputCols("minilm_embeddings")
.setOutputCols("finished_embeddings")
.setOutputAsVector(true)

val pipeline = new Pipeline().setStages(Array(
documentAssembler,
embeddings,
embeddingsFinisher
))

val data = Seq("This is a sample sentence for embedding generation.",
"Another example sentence to demonstrate MiniLM embeddings."

).toDF("text")
val result = pipeline.fit(data).transform(data)

result.selectExpr("explode(finished_embeddings) as result").show(1, 80)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|minilm_l6_v2|
|Compatibility:|Spark NLP 5.5.1+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[documents]|
|Output Labels:|[minilm]|
|Language:|en|
|Size:|17.2 MB|