-
Notifications
You must be signed in to change notification settings - Fork 49
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #653 from JdeRobot/issue-652
Added controller brains for different memory densities and lengths
- Loading branch information
Showing
23 changed files
with
2,447 additions
and
44 deletions.
There are no files selected for viewing
191 changes: 191 additions & 0 deletions
191
behavior_metrics/brains/CARLA/tensorflow/brain_carla_bird_eye_deep_learning_50_km_h.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
#!/usr/bin/python | ||
# -*- coding: utf-8 -*- | ||
import csv | ||
import cv2 | ||
import math | ||
import numpy as np | ||
import threading | ||
import time | ||
import carla | ||
from os import path | ||
from albumentations import ( | ||
Compose, Normalize, RandomRain, RandomBrightness, RandomShadow, RandomSnow, RandomFog, RandomSunFlare | ||
) | ||
from utils.constants import PRETRAINED_MODELS_DIR, ROOT_PATH | ||
from utils.logger import logger | ||
from traceback import print_exc | ||
|
||
PRETRAINED_MODELS = ROOT_PATH + '/' + PRETRAINED_MODELS_DIR + 'CARLA/' | ||
|
||
from tensorflow.python.framework.errors_impl import NotFoundError | ||
from tensorflow.python.framework.errors_impl import UnimplementedError | ||
import tensorflow as tf | ||
|
||
|
||
#import os | ||
#os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | ||
|
||
gpus = tf.config.experimental.list_physical_devices('GPU') | ||
for gpu in gpus: | ||
tf.config.experimental.set_memory_growth(gpu, True) | ||
|
||
class Brain: | ||
|
||
def __init__(self, sensors, actuators, handler, model, config=None): | ||
self.camera_0 = sensors.get_camera('camera_0') | ||
self.camera_1 = sensors.get_camera('camera_1') | ||
self.camera_2 = sensors.get_camera('camera_2') | ||
self.camera_3 = sensors.get_camera('camera_3') | ||
|
||
self.cameras_first_images = [] | ||
|
||
self.pose = sensors.get_pose3d('pose3d_0') | ||
|
||
self.bird_eye_view = sensors.get_bird_eye_view('bird_eye_view_0') | ||
|
||
self.motors = actuators.get_motor('motors_0') | ||
self.handler = handler | ||
self.config = config | ||
self.inference_times = [] | ||
self.gpu_inference = True if tf.test.gpu_device_name() else False | ||
|
||
self.threshold_image = np.zeros((640, 360, 3), np.uint8) | ||
self.color_image = np.zeros((640, 360, 3), np.uint8) | ||
|
||
client = carla.Client('localhost', 2000) | ||
client.set_timeout(10.0) # seconds | ||
world = client.get_world() | ||
|
||
time.sleep(5) | ||
self.vehicle = world.get_actors().filter('vehicle.*')[0] | ||
|
||
if model: | ||
if not path.exists(PRETRAINED_MODELS + model): | ||
logger.info("File " + model + " cannot be found in " + PRETRAINED_MODELS) | ||
logger.info("** Load TF model **") | ||
self.net = tf.keras.models.load_model(PRETRAINED_MODELS + model, compile=False) | ||
logger.info("** Loaded TF model **") | ||
else: | ||
logger.info("** Brain not loaded **") | ||
logger.info("- Models path: " + PRETRAINED_MODELS) | ||
logger.info("- Model: " + str(model)) | ||
|
||
self.previous_bird_eye_view_image = 0 | ||
self.bird_eye_view_images = 0 | ||
self.bird_eye_view_unique_images = 0 | ||
|
||
self.first_acceleration = True | ||
|
||
|
||
def update_frame(self, frame_id, data): | ||
"""Update the information to be shown in one of the GUI's frames. | ||
Arguments: | ||
frame_id {str} -- Id of the frame that will represent the data | ||
data {*} -- Data to be shown in the frame. Depending on the type of frame (rgbimage, laser, pose3d, etc) | ||
""" | ||
if data.shape[0] != data.shape[1]: | ||
if data.shape[0] > data.shape[1]: | ||
difference = data.shape[0] - data.shape[1] | ||
extra_left, extra_right = int(difference/2), int(difference/2) | ||
extra_top, extra_bottom = 0, 0 | ||
else: | ||
difference = data.shape[1] - data.shape[0] | ||
extra_left, extra_right = 0, 0 | ||
extra_top, extra_bottom = int(difference/2), int(difference/2) | ||
|
||
|
||
data = np.pad(data, ((extra_top, extra_bottom), (extra_left, extra_right), (0, 0)), mode='constant', constant_values=0) | ||
|
||
self.handler.update_frame(frame_id, data) | ||
|
||
def update_pose(self, pose_data): | ||
self.handler.update_pose3d(pose_data) | ||
|
||
def execute(self): | ||
image = self.camera_0.getImage().data | ||
image_1 = self.camera_1.getImage().data | ||
image_2 = self.camera_2.getImage().data | ||
image_3 = self.camera_3.getImage().data | ||
|
||
bird_eye_view_1 = self.bird_eye_view.getImage(self.vehicle) | ||
bird_eye_view_1 = cv2.cvtColor(bird_eye_view_1, cv2.COLOR_BGR2RGB) | ||
|
||
if self.cameras_first_images == []: | ||
self.cameras_first_images.append(image) | ||
self.cameras_first_images.append(image_1) | ||
self.cameras_first_images.append(image_2) | ||
self.cameras_first_images.append(image_3) | ||
self.cameras_first_images.append(bird_eye_view_1) | ||
|
||
self.cameras_last_images = [ | ||
image, | ||
image_1, | ||
image_2, | ||
image_3, | ||
bird_eye_view_1 | ||
] | ||
|
||
self.update_frame('frame_1', image_1) | ||
self.update_frame('frame_2', image_2) | ||
self.update_frame('frame_3', image_3) | ||
|
||
self.update_frame('frame_0', bird_eye_view_1) | ||
|
||
self.update_pose(self.pose.getPose3d()) | ||
|
||
image_shape=(66, 200) | ||
img_base = cv2.resize(bird_eye_view_1, image_shape) | ||
|
||
AUGMENTATIONS_TEST = Compose([ | ||
Normalize() | ||
]) | ||
image = AUGMENTATIONS_TEST(image=img_base) | ||
img = image["image"] | ||
|
||
self.bird_eye_view_images += 1 | ||
if (self.previous_bird_eye_view_image==img).all() == False: | ||
self.bird_eye_view_unique_images += 1 | ||
self.previous_bird_eye_view_image = img | ||
|
||
img = np.expand_dims(img, axis=0) | ||
start_time = time.time() | ||
try: | ||
prediction = self.net.predict(img, verbose=0) | ||
self.inference_times.append(time.time() - start_time) | ||
throttle = prediction[0][0] | ||
steer = prediction[0][1] * (1 - (-1)) + (-1) | ||
break_command = prediction[0][2] | ||
|
||
speed = self.vehicle.get_velocity() | ||
vehicle_speed = 3.6 * math.sqrt(speed.x**2 + speed.y**2 + speed.z**2) | ||
|
||
if vehicle_speed < 50 and self.first_acceleration: | ||
self.motors.sendThrottle(1.0) | ||
self.motors.sendSteer(0.0) | ||
self.motors.sendBrake(0) | ||
else: | ||
self.first_acceleration = False | ||
self.motors.sendThrottle(throttle) | ||
self.motors.sendSteer(steer) | ||
self.motors.sendBrake(break_command) | ||
except NotFoundError as ex: | ||
logger.info('Error inside brain: NotFoundError!') | ||
logger.warning(type(ex).__name__) | ||
print_exc() | ||
raise Exception(ex) | ||
except UnimplementedError as ex: | ||
logger.info('Error inside brain: UnimplementedError!') | ||
logger.warning(type(ex).__name__) | ||
print_exc() | ||
raise Exception(ex) | ||
except Exception as ex: | ||
logger.info('Error inside brain: Exception!') | ||
logger.warning(type(ex).__name__) | ||
print_exc() | ||
raise Exception(ex) | ||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.