Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature]: support LlavaForConditionalGeneration with turbomind inference #2710

Merged
merged 9 commits into from
Nov 8, 2024
138 changes: 137 additions & 1 deletion docs/en/multi_modal/llava.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,139 @@
# LLaVA

TODO
LMDeploy supports the following llava series of models, which are detailed in the table below:
deepindeed2022 marked this conversation as resolved.
Show resolved Hide resolved

| Model | Size | Supported Inference Engine |
| :----------------------------------: | :--: | :------------------------: |
| llava-hf/Llava-interleave-qwen-7b-hf | 7B | TurboMind, PyTorch |
| llava-hf/llava-1.5-7b-hf | 7B | TurboMind, PyTorch |
| liuhaotian/llava-v1.6-vicuna-7b | 7B | TurboMind, PyTorch |
| liuhaotian/llava-v1.6-mistral-7b | 7B | TurboMind, PyTorch |

The next chapter demonstrates how to deploy an Llava model using LMDeploy, with [llava-hf/llava-interleave](https://huggingface.co/llava-hf/llava-interleave-qwen-7b-hf) as an example.

## Installation

Please install LMDeploy by following the [installation guide](../get_started/installation.md).

Or, you can go with office docker image:

```shell
docker pull openmmlab/lmdeploy:latest
```

## Offline inference

The following sample code shows the basic usage of VLM pipeline. For detailed information, please refer to [VLM Offline Inference Pipeline](./vl_pipeline.md)

```python
from lmdeploy import GenerationConfig, TurbomindEngineConfig, pipeline
from lmdeploy.vl import load_image


pipe = pipeline("llava-hf/llava-interleave-qwen-7b-hf", backend_config=TurbomindEngineConfig(cache_max_entry_count=0.5),
gen_config=GenerationConfig(max_new_tokens=512))

image = load_image('https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg')
prompt = 'Describe the image.'
print(f'prompt:{prompt}')
response = pipe((prompt, image))
print(response)

```

More examples are listed below:

<details>
<summary>
<b>multi-image multi-round conversation, combined images</b>
</summary>

```python
from lmdeploy import pipeline, GenerationConfig

pipe = pipeline('llava-hf/llava-interleave-qwen-7b-hf', log_level='INFO')
messages = [
dict(role='user', content=[
dict(type='text', text='Describe the two images in detail.'),
dict(type='image_url', image_url=dict(url='https://raw.githubusercontent.com/QwenLM/Qwen-VL/master/assets/mm_tutorial/Beijing_Small.jpeg')),
dict(type='image_url', image_url=dict(url='https://raw.githubusercontent.com/QwenLM/Qwen-VL/master/assets/mm_tutorial/Chongqing_Small.jpeg'))
])
]
out = pipe(messages, gen_config=GenerationConfig(top_k=1))

messages.append(dict(role='assistant', content=out.text))
messages.append(dict(role='user', content='What are the similarities and differences between these two images.'))
out = pipe(messages, gen_config=GenerationConfig(top_k=1))
```

</details>

## Online serving

You can launch the server by the `lmdeploy serve api_server` CLI:

```shell
lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf
```

You can also start the service using the aforementioned built docker image:

```shell
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
-p 23333:23333 \
--ipc=host \
openmmlab/lmdeploy:latest \
lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf
```

The docker compose is another option. Create a `docker-compose.yml` configuration file in the root directory of the lmdeploy project as follows:

```yaml
version: '3.5'

services:
lmdeploy:
container_name: lmdeploy
image: openmmlab/lmdeploy:latest
ports:
- "23333:23333"
environment:
HUGGING_FACE_HUB_TOKEN: <secret>
volumes:
- ~/.cache/huggingface:/root/.cache/huggingface
stdin_open: true
tty: true
ipc: host
command: lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: "all"
capabilities: [gpu]
```
Then, you can execute the startup command as below:
```shell
docker-compose up -d
```

If you find the following logs after running `docker logs -f lmdeploy`, it means the service launches successfully.

```text
HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!!
HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!!
HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!!
INFO: Started server process [2439]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:23333 (Press CTRL+C to quit)
```

The arguments of `lmdeploy serve api_server` can be reviewed in detail by `lmdeploy serve api_server -h`.

More information about `api_server` as well as how to access the service can be found from [here](api_server_vl.md)
134 changes: 133 additions & 1 deletion docs/zh_cn/multi_modal/llava.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,135 @@
# LLaVA

TODO
LMDeploy 支持以下 LLaVA 系列模型,具体如下表所示:

| 模型 | 大小 | 支持的推理引擎 |
| :----------------------------------: | :--: | :----------------: |
| llava-hf/Llava-interleave-qwen-7b-hf | 7B | TurboMind, PyTorch |
| llava-hf/llava-1.5-7b-hf | 7B | TurboMind, PyTorch |
| liuhaotian/llava-v1.6-vicuna-7b | 7B | TurboMind, PyTorch |
| liuhaotian/llava-v1.6-mistral-7b | 7B | TurboMind, PyTorch |

接下来的章节将演示如何使用 LMDeploy 部署 LLaVA 模型,并以 [llava-hf/llava-interleave](https://huggingface.co/llava-hf/llava-interleave-qwen-7b-hf) 为例。

## 安装

请按照[安装指南](../get_started/installation.md)安装 LMDeploy。

或者,您也可以使用官方的 Docker 镜像:

```shell
docker pull openmmlab/lmdeploy:latest
```

## 离线推理

以下示例代码展示了 VLM pipeline 的基本用法。有关详细信息,请参考 [VLM 离线推理流程](./vl_pipeline.md)

```python
from lmdeploy import GenerationConfig, TurbomindEngineConfig, pipeline
from lmdeploy.vl import load_image

pipe = pipeline("llava-hf/llava-interleave-qwen-7b-hf", backend_config=TurbomindEngineConfig(cache_max_entry_count=0.5),
gen_config=GenerationConfig(max_new_tokens=512))

image = load_image('https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg')
prompt = 'Describe the image.'
print(f'prompt:{prompt}')
response = pipe((prompt, image))
print(response)
```

更多示例:

<details>
<summary><b>多图片多轮对话,组合图片</b></summary>

```python
from lmdeploy import pipeline, GenerationConfig

pipe = pipeline('llava-hf/llava-interleave-qwen-7b-hf', log_level='INFO')
messages = [
dict(role='user', content=[
dict(type='text', text='Describe the two images in detail.'),
dict(type='image_url', image_url=dict(url='https://raw.githubusercontent.com/QwenLM/Qwen-VL/master/assets/mm_tutorial/Beijing_Small.jpeg')),
dict(type='image_url', image_url=dict(url='https://raw.githubusercontent.com/QwenLM/Qwen-VL/master/assets/mm_tutorial/Chongqing_Small.jpeg'))
])
]
out = pipe(messages, gen_config=GenerationConfig(top_k=1))

messages.append(dict(role='assistant', content=out.text))
messages.append(dict(role='user', content='What are the similarities and differences between these two images.'))
out = pipe(messages, gen_config=GenerationConfig(top_k=1))
```

</details>

## 在线服务

可以使用 `lmdeploy serve api_server` CLI 启动服务器:

```shell
lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf
```

或者,使用前面提到的 Docker 镜像启动服务:

```shell
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
--env "HUGGING_FACE_HUB_TOKEN=<secret>" \
-p 23333:23333 \
--ipc=host \
openmmlab/lmdeploy:latest \
lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf
```

采用 Docker Compose 部署也是一种常见选择。在 lmdeploy 项目的根目录创建 `docker-compose.yml` 文件,如下:

```yaml
version: '3.5'

services:
lmdeploy:
container_name: lmdeploy
image: openmmlab/lmdeploy:latest
ports:
- "23333:23333"
environment:
HUGGING_FACE_HUB_TOKEN: <secret>
volumes:
- ~/.cache/huggingface:/root/.cache/huggingface
stdin_open: true
tty: true
ipc: host
command: lmdeploy serve api_server llava-hf/llava-interleave-qwen-7b-hf
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: "all"
capabilities: [gpu]
```
然后,可以执行以下命令启动服务:
```shell
docker-compose up -d
```

当运行 `docker logs -f lmdeploy` 后看到如下日志,说明服务启动成功:

```text
HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!!
HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!!
HINT: Please open http://0.0.0.0:23333 in a browser for detailed api usage!!!
INFO: Started server process [2439]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:23333 (Press CTRL+C to quit)
```

可以通过 `lmdeploy serve api_server -h` 查看 `lmdeploy serve api_server` 的参数详情。

关于 `api_server` 以及如何访问服务的更多信息可以在[这里](api_server_vl.md)找到。
1 change: 1 addition & 0 deletions lmdeploy/turbomind/deploy/source_model/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from .internlm2 import InternLM2Model # noqa: F401
from .internvl import InternVLModel # noqa: F401
from .llama import LlamaModel # noqa: F401
from .llava import LlavaModel # noqa: F401
from .meta_llama import MetaLlamaModel # noqa: F401
from .minicpmv import MiniCPMVModel # noqa: F401
from .mixtral import MixtralModel # noqa: F401
Expand Down
87 changes: 87 additions & 0 deletions lmdeploy/turbomind/deploy/source_model/llava.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
# Copyright (c) OpenMMLab. All rights reserved.
import json
import os.path as osp

from .base import INPUT_MODELS
from .llama import LlamaModel, LlamaReader


class LlavaReader(LlamaReader):
"""LlavaReader for llama model."""

attn_layer_prefix = 'language_model.model.layers'
attn_layer_patten = r'language_model.model.layers.([0-9]+).'
tok_embeddings_key = 'language_model.model.embed_tokens.weight'
norm_weight_key = 'language_model.model.norm.weight'
output_weight_key = 'language_model.lm_head.weight'

def __init__(self, new_params: dict, unused_params: dict, last_bin: bool,
model_cfg: dict, policy):
model_cfg = model_cfg.get('text_config')
super().__init__(new_params, unused_params, last_bin, model_cfg,
policy)


@INPUT_MODELS.register_module(name='llava')
class LlavaModel(LlamaModel):
"""LlavaModel model in hf format."""

def __init__(self, model_path: str, tokenizer_path: str, **kwargs):
super().__init__(model_path, tokenizer_path, **kwargs)
from transformers import AutoConfig
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
config = getattr(config, 'text_config', config)
arch = config.architectures[0]
_readers = dict(Qwen2ForCausalLM=LlavaReader,
LlamaForCausalL=LlavaReader)
deepindeed2022 marked this conversation as resolved.
Show resolved Hide resolved
self.Reader = _readers[arch]
self.arch = arch

def model_info(self):
"""Read model info for LlavaForConditionalGeneration.

https://huggingface.co/llava-hf/llava-interleave-qwen-7b-hf
"""
params_path = osp.join(self.model_path, 'config.json')
with open(params_path) as f:
model_arg = json.load(f)['text_config']
num_layer = model_arg.get('num_hidden_layers', 32)
norm_eps = model_arg.get('rms_norm_eps', 1e-6)
attn_head_num = model_arg.get('num_attention_heads', 32)
if 'num_key_value_heads' in model_arg:
kv_head_num = model_arg.get('num_key_value_heads', 32)
else:
kv_head_num = model_arg.get('num_attention_heads', 32)
rope_theta = float(model_arg.get('rope_theta', 10000.0))
max_position_embeddings = int(
model_arg.get('max_position_embeddings', 0))
rope_scaling = model_arg.get('rope_scaling', None)
scaling_factor = 0.0
use_dynamic_ntk = 0

# special for the model: llava-hf/llava-interleave-qwen-7b-hf
hidden_units = model_arg.get('hidden_size', 4096)
vocab_size = model_arg.get('vocab_size', 152000)
intermediate_size = model_arg.get('intermediate_size', 11008)
attn_bias = int(model_arg.get('attn_bias', 1))
use_logn_attn = int(model_arg.get('use_logn_attn', 0))
deepindeed2022 marked this conversation as resolved.
Show resolved Hide resolved

if isinstance(rope_scaling, dict):
scaling_type = model_arg['rope_scaling'].get('type', '')
scaling_factor = model_arg['rope_scaling'].get('factor', '')
if scaling_type == 'dynamic':
use_dynamic_ntk = 1

return dict(num_layer=num_layer,
norm_eps=norm_eps,
head_num=attn_head_num,
hidden_units=hidden_units,
kv_head_num=kv_head_num,
rope_theta=rope_theta,
max_position_embeddings=max_position_embeddings,
use_dynamic_ntk=use_dynamic_ntk,
rope_scaling_factor=scaling_factor,
inter_size=intermediate_size,
use_logn_attn=use_logn_attn,
attn_bias=attn_bias,
vocab_size=vocab_size)
4 changes: 4 additions & 0 deletions lmdeploy/turbomind/generate_gemm_config.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,10 +54,14 @@ def main(head_num: int = 32,
from transformers import AutoConfig
config = AutoConfig.from_pretrained(model_path,
trust_remote_code=True)

for key in ['language_config', 'llm_config', 'text_config']:
config = getattr(config, key, config)
head_num = config.num_attention_heads
size_per_head = config.hidden_size // head_num
inter_size = config.intermediate_size
vocab_size = config.vocab_size

for bsz in range(1, max_batch_size + 1):
subprocess.call(
f'{get_llama_gemm()} {bsz} 1 1 {head_num} {size_per_head}'
Expand Down
Loading
Loading