Skip to content

Commit

Permalink
Adds an experimental KernelDispacther to numba_dpex.
Browse files Browse the repository at this point in the history
    - The numba_dpex.experimental module adds a new dispatcher
      class for numba_dpex kernels. The new dispatcher is a
      numba.dispatcher.Dispathcer subclass.
    - Introduce a new compiler class that is used to compile a
      numba_dpex.kernel decorated function to spirv and then
      store the spirv module as the compiled "overload".
    - Adds an experimental `call_kernel` dpjit function that
      will be used to submit or launch kernels. The `call_kernel`
      function generates LLVM IR code for all the functionality
      currenty done in pure Python in JitKernel.__call__.
  • Loading branch information
Diptorup Deb committed Oct 24, 2023
1 parent f371f32 commit 981ec0a
Show file tree
Hide file tree
Showing 7 changed files with 744 additions and 0 deletions.
2 changes: 2 additions & 0 deletions numba_dpex/core/descriptor.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,11 +38,13 @@ def _inherit_if_not_set(flags, options, name, default=targetconfig._NotSet):
class DpexTargetOptions(CPUTargetOptions):
experimental = _option_mapping("experimental")
release_gil = _option_mapping("release_gil")
no_compile = _option_mapping("no_compile")

def finalize(self, flags, options):
super().finalize(flags, options)
_inherit_if_not_set(flags, options, "experimental", False)
_inherit_if_not_set(flags, options, "release_gil", False)
_inherit_if_not_set(flags, options, "no_compile", True)


class DpexKernelTarget(TargetDescriptor):
Expand Down
22 changes: 22 additions & 0 deletions numba_dpex/experimental/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# SPDX-FileCopyrightText: 2023 Intel Corporation
#
# SPDX-License-Identifier: Apache-2.0

from numba.core.imputils import Registry

from .decorators import kernel
from .kernel_dispatcher import KernelDispatcher
from .launcher import call_kernel
from .models import *
from .types import KernelDispatcherType

registry = Registry()
lower_constant = registry.lower_constant


@lower_constant(KernelDispatcherType)
def dpex_dispatcher_const(context, builder, ty, pyval):
return context.get_dummy_value()


__all__ = ["kernel", "KernelDispatcher", "call_kernel"]
76 changes: 76 additions & 0 deletions numba_dpex/experimental/decorators.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# SPDX-FileCopyrightText: 2023 Intel Corporation
#
# SPDX-License-Identifier: Apache-2.0

import inspect

from numba.core import sigutils

from .kernel_dispatcher import KernelDispatcher


def kernel(func_or_sig=None, debug=False, cache=False, **options):
"""A decorator to define a kernel function.
A kernel function is conceptually equivalent to a SYCL kernel function, and
gets compiled into either an OpenCL or a LevelZero SPIR-V binary kernel.
A kernel decorated Python function has the following restrictions:
* The function can not return any value.
* All array arguments passed to a kernel should adhere to compute
follows data programming model.
"""
# FIXME: The options need to be evaluated and checked here like it is
# done in numba.core.decorators.jit

def _kernel_dispatcher(pyfunc, sigs=None):
return KernelDispatcher(
pyfunc=pyfunc,
debug_flags=debug,
enable_cache=cache,
specialization_sigs=sigs,
targetoptions=options,
)

if func_or_sig is None:
return _kernel_dispatcher
elif isinstance(func_or_sig, str):
raise NotImplementedError(
"Specifying signatures as string is not yet supported by numba-dpex"
)
elif isinstance(func_or_sig, list) or sigutils.is_signature(func_or_sig):
# String signatures are not supported as passing usm_ndarray type as
# a string is not possible. Numba's sigutils relies on the type being
# available in Numba's `types.__dict__` and dpex types are not
# registered there yet.
if isinstance(func_or_sig, list):
for sig in func_or_sig:
if isinstance(sig, str):
raise NotImplementedError(
"Specifying signatures as string is not yet supported "
"by numba-dpex"
)
# Specialized signatures can either be a single signature or a list.
# In case only one signature is provided convert it to a list
if not isinstance(func_or_sig, list):
func_or_sig = [func_or_sig]

def _specialized_kernel_dispatcher(pyfunc):
return KernelDispatcher(
pyfunc=pyfunc,
debug_flags=debug,
enable_cache=cache,
specialization_sigs=func_or_sig,
)

return _specialized_kernel_dispatcher
else:
func = func_or_sig
if not inspect.isfunction(func):
raise ValueError(
"Argument passed to the kernel decorator is neither a "
"function object, nor a signature. If you are trying to "
"specialize the kernel that takes a single argument, specify "
"the return type as void explicitly."
)
return _kernel_dispatcher(func)
Loading

0 comments on commit 981ec0a

Please sign in to comment.