Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for instance segmentation with LABELED segmentation type #184

Draft
wants to merge 7 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file added data/test_files/seg_image_grayscale_labeled.dcm
Binary file not shown.
2 changes: 1 addition & 1 deletion docs/usage.rst
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ Derive a Segmentation image from a multi-frame Slide Microscopy (SM) image:
)

# Create the Segmentation instance
seg_dataset = Segmentation(
seg_dataset = hd.seg.Segmentation(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Given the speculative nature of this PR, we should just fix this on master

source_images=[image_dataset],
pixel_array=mask,
segmentation_type=hd.seg.SegmentationTypeValues.BINARY,
Expand Down
1 change: 1 addition & 0 deletions src/highdicom/seg/enum.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ class SegmentationTypeValues(Enum):

BINARY = 'BINARY'
FRACTIONAL = 'FRACTIONAL'
LABELED = 'LABELED'


class SegmentationFractionalTypeValues(Enum):
Expand Down
158 changes: 108 additions & 50 deletions src/highdicom/seg/sop.py
Original file line number Diff line number Diff line change
Expand Up @@ -274,6 +274,8 @@ def __init__(
if len(source_images) == 0:
raise ValueError('At least one source image is required.')

segmentation_type = SegmentationTypeValues(segmentation_type)

uniqueness_criteria = set(
(
image.StudyInstanceUID,
Expand All @@ -298,17 +300,49 @@ def __init__(
'are multi-frame images.'
)
is_tiled = hasattr(src_img, 'TotalPixelMatrixRows')
supported_transfer_syntaxes = {
ImplicitVRLittleEndian,
ExplicitVRLittleEndian,

supported_compressed_transfer_syntaxes = {
JPEG2000Lossless,
JPEGLSLossless,
RLELossless,
}
supported_native_transfer_syntaxes = {
ImplicitVRLittleEndian,
ExplicitVRLittleEndian,
}
supported_transfer_syntaxes = set()
supported_transfer_syntaxes.update(
supported_compressed_transfer_syntaxes
)
supported_transfer_syntaxes.update(
supported_native_transfer_syntaxes
)
hackermd marked this conversation as resolved.
Show resolved Hide resolved
if transfer_syntax_uid not in supported_transfer_syntaxes:
raise ValueError(
f'Transfer syntax "{transfer_syntax_uid}" is not supported.'
)
if segmentation_type == SegmentationTypeValues.BINARY:
if transfer_syntax_uid not in supported_native_transfer_syntaxes:
raise ValueError(
f'Transfer syntax "{transfer_syntax_uid}" is not supported '
'for segmentation type BINARY.'
'Supported are "{}"'.format(
'", "'.join(supported_native_transfer_syntaxes)
)
)
if segmentation_type == SegmentationTypeValues.LABELED:
if (
pixel_array.dtype.itemsize > 2 and
transfer_syntax_uid not in supported_native_transfer_syntaxes
):
raise ValueError(
f'Transfer syntax "{transfer_syntax_uid}" is not supported '
'for segmentation type LABELED with more than 16 bits '
'allocated per sample.'
'Supported are "{}"'.format(
'", "'.join(supported_native_transfer_syntaxes)
)
)

if pixel_array.ndim == 2:
pixel_array = pixel_array[np.newaxis, ...]
Expand Down Expand Up @@ -442,11 +476,9 @@ def __init__(
self.ContentCreatorIdentificationCodeSequence = \
content_creator_identification

segmentation_type = SegmentationTypeValues(segmentation_type)
self.SegmentationType = segmentation_type.value
if self.SegmentationType == SegmentationTypeValues.BINARY.value:
self.BitsAllocated = 1
self.HighBit = 0
if self.file_meta.TransferSyntaxUID.is_encapsulated:
raise ValueError(
'The chosen transfer syntax '
Expand All @@ -455,22 +487,31 @@ def __init__(
)
elif self.SegmentationType == SegmentationTypeValues.FRACTIONAL.value:
self.BitsAllocated = 8
self.HighBit = 7
segmentation_fractional_type = SegmentationFractionalTypeValues(
fractional_type
)
self.SegmentationFractionalType = segmentation_fractional_type.value
if max_fractional_value > 2**8:
raise ValueError(
'Maximum fractional value must not exceed image bit depth.'
'Maximum fractional value must not exceed '
'the number allocated bits.'
)
self.MaximumFractionalValue = max_fractional_value
elif self.SegmentationType == SegmentationTypeValues.LABELED.value:
bit_depth = pixel_array.dtype.itemsize * 8
if bit_depth not in (8, 16, 32):
raise ValueError(
'The number of allocated bits must be a multiple of 8 and '
'less than or equal to 32.'
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

24 is a multiple of 8 and less than or equal to 32 ;)

)
self.BitsAllocated = bit_depth
else:
raise ValueError(
'Unknown segmentation type "{}"'.format(segmentation_type)
f'Unknown segmentation type "{segmentation_type}".'
)

self.BitsStored = self.BitsAllocated
self.HighBit = self.BitsAllocated - 1
self.LossyImageCompression = getattr(
src_img,
'LossyImageCompression',
Expand Down Expand Up @@ -753,7 +794,7 @@ def __init__(

for i, segment_number in enumerate(described_segment_numbers):
# Pixel array for just this segment
if pixel_array.dtype in (np.float_, np.float32, np.float64):
if pixel_array.dtype.kind == 'f':
# Floating-point numbers must be mapped to 8-bit integers in
# the range [0, max_fractional_value].
if pixel_array.ndim == 4:
Expand All @@ -764,27 +805,34 @@ def __init__(
segment_array * float(self.MaximumFractionalValue)
)
planes = planes.astype(np.uint8)
elif pixel_array.dtype in (np.uint8, np.uint16):
# Note that integer arrays with segments stacked down the last
# dimension will already have been converted to bool, leaving
# only "label maps" here, which must be converted to binary
# masks.
planes = np.zeros(pixel_array.shape, dtype=np.uint8)
planes[pixel_array == segment_number] = 1
elif pixel_array.dtype == np.bool_:
elif pixel_array.dtype.kind in 'u' or pixel_array.dtype == np.bool_:
if pixel_array.ndim == 4:
planes = pixel_array[:, :, :, segment_number - 1]
else:
planes = pixel_array
planes = planes.astype(np.uint8)
# It may happen that a boolean array is passed that should be
# interpreted as fractional segmentation type. In this case, we
# also need to stretch pixel valeus to 8-bit unsigned integer
# range by multiplying with the maximum fractional value.
if segmentation_type == SegmentationTypeValues.BINARY:
# Note that integer arrays with segments stacked down
# the last dimension will already have been converted
# to bool, leaving only "label maps" here, which must
# be converted to binary masks.
planes = np.zeros(pixel_array.shape, dtype=np.uint8)
planes[pixel_array == segment_number] = 1
else:
planes = pixel_array
Comment on lines +808 to +816
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this is wrong: the top branch (if branch) should be used if segmentation type is either BINARY or FRACTIONAL. We allow users to pass "label map" style pixel arrays regardless of the BINARY/FRACTIONAL segmentation type.

if segmentation_type == SegmentationTypeValues.FRACTIONAL:
planes *= int(self.MaximumFractionalValue)
# It may happen that a boolean array is passed that
# should be interpreted as fractional segmentation
# type. In this case, we also need to stretch pixel
# values to 8-bit unsigned integer range by multiplying
# with the maximum fractional value.
planes = planes.astype(np.float32)
planes *= np.float32(self.MaximumFractionalValue)
planes = planes.astype(np.uint8)
else:
raise TypeError('Pixel array has an invalid data type.')
raise TypeError(
'Pixel array has an invalid data type. '
'Data type must be either np.bool_, numpy.float32, '
'numpy.float64, numpy.uint8, numpy.uint16, or numpy.uint32.'
)

contained_plane_index = []
for j in plane_sort_index:
Expand Down Expand Up @@ -1038,48 +1086,58 @@ def _check_and_cast_pixel_array(
f'({len(described_segment_numbers)}).'
)

if pixel_array.dtype in (np.bool_, np.uint8, np.uint16):
if pixel_array.dtype.kind == 'u' or pixel_array.dtype == np.bool_:
if pixel_array.ndim == 3:
# A label-map style array where pixel values represent
# segment associations
segments_present = np.unique(
pixel_array[pixel_array > 0].astype(np.uint16)
)

# The pixel values in the pixel array must all belong to
# a described segment
if not np.all(
if segmentation_type == SegmentationTypeValues.BINARY:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It should be perfectly permissible for a user to pass an unsigned integer array and request that it be stored as a FRACTIONAL seg, e.g. in order to use an efficient lossless codec or to ensure individual frames may be efficiently read.

Therefore this should include BINARY and FRACTIONAL, or in fact you might want to swap the order and make this case the else branch (i.e. if not LABELED)

# A label-map style array where pixel values represent
# segment associations
segments_present = np.unique(
pixel_array[pixel_array > 0].astype(np.uint16)
)
# The pixel values in the pixel array must all belong to
# a described segment
if not np.all(
np.in1d(segments_present, described_segment_numbers)
):
raise ValueError(
'Pixel array contains segments that lack '
'descriptions.'
)
raise ValueError(
'Pixel array contains segments that lack '
'descriptions.'
)
elif segmentation_type == SegmentationTypeValues.LABELED:
if pixel_array.max() >= 2 ** 32:
raise ValueError(
'When passing segments for segmentation type '
'LABELED with an integer data type, '
'pixels must not exceed 32-bit depth.'
)

# By construction of the pixel array, we know that the segments
# cannot overlap
segments_overlap = SegmentsOverlapValues.NO

else:
# Pixel array is 4D where each segment is stacked down
# the last dimension
# In this case, each segment of the pixel array should be binary
if pixel_array.max() > 1:
raise ValueError(
'When passing a 4D stack of segments with an integer '
'pixel type, the pixel array must be binary.'
)
pixel_array = pixel_array.astype(np.bool_)
if segmentation_type == SegmentationTypeValues.BINARY:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Again, this needs to include FRACTIONAL

# Pixel array is 4D where each segment is stacked down the
# last dimension. In this case, each segment of the pixel
# array should be binary.
if pixel_array.max() > 1:
raise ValueError(
'When passing a 4D stack of segments for '
'segmentation type BINARY with an integer data '
'type, the pixel array must be binary.'
)
pixel_array = pixel_array.astype(np.bool_)

# Need to check whether or not segments overlap
if pixel_array.shape[-1] == 1:
# A single segment does not overlap
segments_overlap = SegmentsOverlapValues.NO
elif pixel_array.sum(axis=-1).max() > 1:
elif (pixel_array > 0).sum(axis=-1).max() > 1:
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I don't see why this change is required. To get here, the pixel array must have an unsigned integer type, so the new and old version of this line are logical equivalent as far as I can tell

segments_overlap = SegmentsOverlapValues.YES
else:
segments_overlap = SegmentsOverlapValues.NO

elif (pixel_array.dtype in (np.float_, np.float32, np.float64)):
elif pixel_array.dtype.kind == 'f':
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

You'll probably need some extra logic in this section for the LABELED case. You may want to either disallow floating point data types for LABELED, or check that the values are actually integer values (like the BINARY case where we allow users to pass a float array that contains only the vales 0.0 and 1.0 exactly)

unique_values = np.unique(pixel_array)
if np.min(unique_values) < 0.0 or np.max(unique_values) > 1.0:
raise ValueError(
Expand Down
Loading