Skip to content

Estimating a kernel matrix of determinantal point processes

License

Notifications You must be signed in to change notification settings

ISMHinoLab/DPPMMEstimation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DPPMMEstimation

Estimating parameters of determinantal point processes using an MM algorithm. Provides examples of the paper published in TMLR:
Takahiro Kawashima, Hideitsu Hino, "Minorization-Maximization for Learning Determinantal Point Processes," Transactions on Machine Learning Research, November 2023.

Working Directory

Please set your working directory at scripts/.

Recommended Environments

All the program are implemented in Julia.

Language Recommended ver.
Julia ≥ 1.8.0
Library Recommended ver.
Random
LinearAlgebra
SparseArrays
Plots ≥ 1.36.1
UnicodePlots ≥ 3.3.1
StatsBase ≥ 0.33.21
Distributions ≥ 0.25.76
DataFrames ≥ 1.4.2
DataFramesMeta ≥ 0.13.0
Query ≥ 1.0.0
JLD2 ≥ 0.4.30
DeterminantalPointProcesses ≥ 0.2.2
MatrixEquations ≥ 2.2.2
CSV ≥ 0.10.7
MAT ≥ 0.10.3
StatsPlots ≥ 0.15.5

How to Setup

> git clone https://github.com/ISMHinoLab/DPPMMEstimation.git && cd DPPMMEstimation
> julia

(@v1.8) pkg> activate .
  Activating project at `/path/to/DPPMMEstimation`

(DPPMMEstimation) pkg> instantiate
# the mandatory packages will be installed
# you can check the environment by `pkg> status`

Codes for the Example

File Description
scripts/exec_toydata.jl Example on the toy data
scripts/exec_nottingham.jl Example on the Nottingham dataset
scripts/exec_amazon.jl Example on the Amazon Baby Registry Dataset
scripts/aggr_results.jl Aggregate an experimental result into a DataFrame

References

  • Kawashima, T. and Hino, H. "Minorization-Maximization for Learning Determinantal Point Processes," Transactions on Machine Learning Research, November 2023.
  • Mariet, Z. and Sra, S. "Fixed-point Algorithms for Learning Determinantal Point Processes," ICML2015.
  • Gillenwater, J. A., Kulesza, A., Fox, E. and Taskar, B. "Expectation-Maximization for Learning Determinantal Point Processes," NeurIPS2014.
  • Nottingham Music Database: https://abc.sourceforge.net/NMD/
  • jukedeck/nottingham-dataset: https://github.com/jukedeck/nottingham-dataset

License

This repository is released under the GNU GPLv3 license.

About

Estimating a kernel matrix of determinantal point processes

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages