-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregate_results.py
53 lines (43 loc) · 2.73 KB
/
aggregate_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from pathlib import Path
import pandas as pd
def write_results():
results = []
base_folder = Path("./data_sets/")
for data_set_folder in base_folder.iterdir():
if data_set_folder.is_dir():
data_set_name = data_set_folder.name
print(f"Data set: {data_set_name}")
for checkpoint_folder in data_set_folder.iterdir():
if "checkpoint" in checkpoint_folder.name:
model_name = checkpoint_folder.name.split("_")[1]
print(f"Model: {model_name}")
for config_folder in checkpoint_folder.iterdir():
if "config" in config_folder.name:
config_index = int(config_folder.name.split("_")[1])
print(f"Config: {config_index}")
for fold_folder in config_folder.iterdir():
if "fold" in fold_folder.name:
fold_index = fold_folder.name.split("_")[1]
print(f"Fold: {fold_index}")
fit_log_file = fold_folder / "fit_log.json"
predict_log_file = fold_folder / "predict_log.json"
evaluate_log_file = fold_folder / "evaluate_log.json"
def log_exists(log_file, type_file):
if log_file.exists():
print(f"{type_file} log exists for {data_set_name} {model_name} "
f"{config_index} {fold_index}")
return True
else:
print(f"{type_file} log missing for {data_set_name} {model_name} "
f"{config_index} {fold_index}")
return False
fit_log_exists = log_exists(fit_log_file, "Fit")
predict_log_exists = log_exists(predict_log_file, "Predict")
evaluate_log_exists = log_exists(evaluate_log_file, "Evaluate")
results.append({"data_set_name": data_set_name, "model": model_name,
"config": config_index, "fold": fold_index, "fit": fit_log_exists,
"predict": predict_log_exists, "evaluate": evaluate_log_exists})
results_df = pd.DataFrame(results)
results_df.to_csv("results.csv")
if __name__ == "__main__":
write_results()